Rhysida longipes longipes (Newport, 1845)

Schileyko, Arkady A. & Stoev, Pavel E., 2016, Scolopendromorpha of New Guinea and adjacent islands (Myriapoda, Chilopoda), Zootaxa 4147 (3), pp. 247-280 : 257-258

publication ID

https://doi.org/ 10.11646/zootaxa.4147.3.3

publication LSID




persistent identifier


treatment provided by


scientific name

Rhysida longipes longipes (Newport, 1845)


6. Rhysida longipes longipes (Newport, 1845) View in CoL

Figs 18 View FIGURE 18 , 22–24

Rhysida longipes longipes: Attems, 1930: 194 View in CoL ; R. longipes: Koch, 1985: 212 View in CoL ;

R. l. longipes: Lewis, 2002: 86 View in CoL ;

R. l. longipes: Chao & Chang, 2003: 8 View in CoL ; R. longipes: Schileyko, 2007: 82 View in CoL ;

R. l. longipes: Lewis & Cole, 2007: 82 View in CoL ; R. l. longipes: Waldock & Lewis, 2014: 77 View in CoL .

Material. Papua New Guinea, Bismarck Archipelago, New Britain [ Island], [East New Britain Province], Rabaul [city], under bark, 1 juv, 18.11.1975, leg. PB , No. 10 803 in NMNHS.

Range. India, Nepal, East and West Africa, S Arabian Peninsula ( Yemen) , Madagascar, Seychelles, Mauritius, Chagos Archipelago, Taiwan, Haiti, introduced into Florida; see also Simaiakis & Edgecombe (2013). Attems (1930) recorded the species also from Central and South America , however, we were not able to trace back where the record comes from. We add to the above list also Peru (Loreto Region, Iquitos) , Pakistan [ Iran?] (Makran Coast) , Sri Lanka ( Sabaragamuwa Province ), The Philippines (Cebu Island) , Vietnam (Dong Nai Province, Ma Da) , Cambodia ( Rattanakiri Province , Banlung) and Papua New Guinea .

Remarks. In spite of its small length (about 17 mm) the only specimen we have at disposal was easy to identify following the key of Attems (1930). It differs slightly from Attems’ description in having somewhat shorter antennae (juvenile condition?), which are coiled but can reach to the middle of tergite 5 (vs 6) at most when folded backwards. Another difference is the number of spines of coxopleural process: 2 apical + 1 subapical + 1 lateral ( Fig. 22) vs 3 apical + 1 lateral sensu Attems (1930). However, the studied exemplar conforms well to the recent and more detailed descriptions of Lewis (2002), Lewis & Cole (2007) and Waldock & Lewis (2014). The length of antennae shows considerable variation in the non-Papuan specimens. The Banlung adult specimen (contorted exemplar, No 7003) has very short antennae (right of 17 articles, left of 16 articles with apical one(s) missing). Both adults from Makran Coast (initially semi-dried, No 7068) and the juvenile specimen from Vietnam (19–20 mm, No. 6633) also have very short antennae: left of 17 articles, right of 13 ones, with a few apical antennomeres missing in No. 7068 and 18 + 18 antennomeres which reach the posterior margin of tergite 3 when folded backward in No. 6633. The adult specimen from Sri Lanka (N 7455) has antennae of average length (18 + 18 articles) which reach to the posterior margin of tergite 4 and in all other non-Papuan exemplars the antennae are longer, reaching the posterior margin of tergites 5–6.

Our specimen is too small to recognize clearly the spinulation of maxillae 2, but additional material shows pretarsus with the only (under) accessory spine like in previous species (see above). This spur-like spine is approximately half as long as pretarsus and closely pressed to the latter.

All specimens at hand show elongated, oval (not triangular) spiracles with well developed atrium. The characteristic inner papillae are few and hardly visible in the juvenile New Guinean specimen, but in the others they are numerous and cover the innermost part of the atrium completely ( Fig. 18 View FIGURE 18 ). An intermediate stage of development of inner papillae is present in the juvenile (19–20 mm long) from Vietnam (Fig. 23).

In the Banlung exemplar, the left coxopleural process has 1 apical + 2 subapical + 1 lateral spines, but in the right process 1 apical and 2 subapical spines are partially fused ( Fig. 24).

R. longipes can readily be distinguished from R. immarginata by having marginations from tergites 7–11 onwards, legs 1–5/8 bearing 2 tarsal spurs (vs 1–16/ 17 in the latter) and more spines on the prefemora of ultimate legs (8–10 vs 3–4) (compare Figs 22 with 19).














Rhysida longipes longipes (Newport, 1845)

Schileyko, Arkady A. & Stoev, Pavel E. 2016

R. l. longipes:

Waldock 2014: 77
Lewis 2007: 82

R. l. longipes:

Schileyko 2007: 82
Chao 2003: 8

R. l. longipes:

Lewis 2002: 86

Rhysida longipes longipes:

Koch 1985: 212
Attems 1930: 194
GBIF Dataset (for parent article) Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF