Polemon ater, Portillo & Branch & Tilbury & Nagy & Hughes & Kusamba & Muninga & Aristote & Behangana & Greenbaum, 2019

Portillo, Frank, Branch, William R., Tilbury, Colin R., Nagy, Zoltán T., Hughes, Daniel F., Kusamba, Chifundera, Muninga, Wandege M., Aristote, Mwenebatu M., Behangana, Mathias & Greenbaum, Eli, 2019, A Cryptic New Species of Polemon (Squamata: Lamprophiidae, Aparallactinae) from the Miombo Woodlands of Central and East Africa, Copeia 107 (1), pp. 22-35 : 24-31

publication ID

https://doi.org/ 10.1643/ch-18-098

publication LSID

lsid:zoobank.org:pub:1C9A5497-D2CD-4C49-9CAA-8CC175BF287E

DOI

https://doi.org/10.5281/zenodo.13243336

persistent identifier

https://treatment.plazi.org/id/6256E503-4C74-4033-BABE-CEE8C42A067E

taxon LSID

lsid:zoobank.org:act:6256E503-4C74-4033-BABE-CEE8C42A067E

treatment provided by

Felipe

scientific name

Polemon ater
status

sp. nov.

Polemon ater View in CoL , new species

Black Snake-eater urn:lsid:zoobank.org:act:6256E503-4C74-4033-BABE-CEE8C42A067E

Figures 4 View FIG , 5 View FIG , 6 View FIG ; Table 2

Miodon gabonensis christyi, Loveridge (1944; part): 170, 178– 180.

Miodon christyi, Laurent (1947; part): 10.

Miodon christyi, de Witte and Laurent (1947 ; part): 8, 60, 73– 75, figs. 67–69.

Miodon christyi, de Witte (1953): 264 –265, fig. 91.

Miodon christyi, Laurent (1955; part): 293.

Miodon christyi, Laurent (1956b) : 252.

Miodon collaris christyi, Loveridge (1957; part): 283.

Miodon christyi, Broadley and Pitman (1960): 437 , 447. Miodon christyi, Bourgeois (1968 : part): 179, 284.

Polemon christyi, Broadley (1971): 26 , 76.

Miodon christyi, Pitman (1974: part): 135, 165–168, 205, colour plate M, fig. 3, plate XII.

Polemon christyi, Welch (1982; part): 142.

Polemon christyi, Hughes View in CoL (1983; part): 316, appendix A. Polemon christyi, Chifundera (1990 View in CoL ; part): table 1.

Polemon christyi, Broadley and Howell (1991 View in CoL ; part): 29, 35, 62. Polemon christyi, Broadley (1998 View in CoL ; part): xxx.

Polemon christyi, Behangana and Goodman (2002 View in CoL ; part): 64. Polemon christyi, Spawls et al. View in CoL (2002; part): 426.

Polemon christyi, Broadley et al. (2003): 95 View in CoL –96, fig. 17. Polemon christyi, Broadley and Cotterill (2004 View in CoL ; part): 47, 52. Polemon christyi, Spawls et al. View in CoL (2004; part): 426.

Polemon christyi, Chirio and Ineich (2006 View in CoL ; part): 58.

Polemon christyi, Lötters et al. View in CoL (2007; part): 98–99, plate 12. Polemon christyi, Caro et al. (2011 View in CoL ; part): 561.

Polemon christyi, Wallach et al. View in CoL (2014; part): 561, table 1. Polemon christyi, Tilbury and Branch (2014) View in CoL : 36–38, figs. 1 (two figures labeled fig. 1).

Polemon christyi, Spawls et al. (2018; part): 461, unnumbered figure.

Holotype.— PEM R20734 , subadult male, Democratic Republic of the Congo, Lualaba Province , Fungurume, 10.53388S, 26.33758E, 1189 m, C. Tilbury, 12 February 2014 (Tilbury and Branch, 2014). GoogleMaps

Paratype.— PEM R17452 , adult female, Democratic Republic of the Congo, Lualaba Province , Kalakundi, 10.65508S, 25.93258E, 1472 m, W GoogleMaps . R. Branch , 25 January 2008 .

Referred material.— Given the morphological similarities (scale counts and coloration) between southern populations previously referred to P. christyi , we provisionally assign records from southeastern DRC ( de Witte and Laurent, 1943, 1947; de Witte, 1953; Laurent, 1956b), Zambia ( Broadley, 1971; Broadley et al., 2003), and west-central Tanzania

Downloaded From: https://bioone.org/journals/Copeia on 05 Aug 2024 Terms of Use: https://bioone.org/terms-of-use

* Polemon ater , * Polemon ater ,

new species, female new species, male Polemon christyi * Polemon christyi * Polemon collaris * Polemon collaris Character (n ¼ 1) paratype (n ¼ 1) holotype females (n ¼ 2) males (n ¼ 3) females (n ¼ 4) males (n ¼ 4)

SVL 640 254 758.5620.5 (744–773) 430.06213.0 (231–654) 502.36116.0 (364–642) 372.96163.8 (230–608) TL 27.9 17.0 38.163.46 (35.6–40.5) 30.2616.6 (15.7–48.4) 24.361.5 (22.3–25.8) 28.2610.0 (14.7–38.5) HL 13.6 7.9 22.965.2 (19.2–26.6) 13.165.7 (8.8–19.5) 14.062.0 (11.5–16.4) 11.564.1 (9.1–17.6) HW 10.2 4.5 14.461.9 (13.0–15.7) 8.864.8 (4.7–14.1) 8.360.8 (7.1–8.9) 7.362.4 (5.4–10.9) VENT — 211 229.560.7 (229–230) 205.765.9 (199–210) 239.369.5 (231–251) 206.8618.0 (180–219) SCDL 15 20 17.562.1 (16–19) 20 17.561.3 (16–19) 23.361.7 (21–25) DSRM 15 15 15 15 15 15

SUPRA 7 7 7 7 7 7

INFRA 7 7 7 7 7 7

PREOC 1 1 1 1 1 1

POSTOC 2 2 2 2 2 2

(Loveridge, 1944; Caro et al., 2011; Spawls et al., 2018) to P. ater .

Diagnosis.— Polemon ater is a medium to large aparallactine. The dorsum and venter are uniformly grayish black or black, with ventrals and subcaudals each edged posteriorly in silver white, lacking any lighter tones or shades anywhere on the dorsum and lacking a distinct collar; the preocular scale is irregular in shape (somewhat triangular with a rounded top); dorsally the head narrows towards the snout. Cytochrome b and ND4 pairwise sequence divergence rates between P. ater and its closest relative ( P. collaris ) ranged between 2.5% to 5.3%.

Comparisons.— ( Figs. 4 View FIG , 5 View FIG , 6 View FIG ; Table 2) Based on examined material and published details ( Boulenger, 1903; de Witte, 1941, 1953, 1962, 1966; de Witte and Laurent, 1943, 1947; Laurent, 1956a, 1956b, 1960; Pitman, 1974; Broadley and Howell, 1991; Meirte, 1992; Broadley et al., 2003; Chippaux, 2006; Trape and Mané, 2006; Chirio and LeBreton, 2007; Pauwels and Vande weghe, 2008), P. ater differs from P. acanthias by dorsal coloration (grayish black or black vs. whitish or pale reddish with five black stripes in P. acanthias ), having a divided cloacal plate (entire in P. acanthias ), and ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. white in P. acanthias ); from P. barthii by the number of postocular scales (two vs. one in P. barthii ), the shape of the preocular scale (irregular vs. trapezoidal in P. barthii ), dorsal coloration (grayish black or black vs. olive in P. barthii ), having a divided cloacal plate (entire in P. barthii ), and ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. yellowish white in P. barthii ); from P. bocourti by the shape of the preocular scale (irregular vs. triangular in P. bocourti ), and lacking a distinct collar (distinct creamy yellow collar in P. bocourti ), having a divided cloacal plate (entire in P. bocourti ), and having a narrower snout; from P. fulvicollis by the number of ventral scales (202–242 vs. 247–267 in P. fulvicollis ), body shape (stout vs. slender and long in P. fulvicollis ), ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. white in P. fulvicollis ),

Downloaded From: https://bioone.org/journals/Copeia on 05 Aug 2024

Terms of Use: https://bioone.org/terms-of-use

and lacking a distinct collar (yellowish or orange collar present in P. fulvicollis ); from P. gracilis by the number of infralabials (seven vs. six in P. gracilis ), the number of ventral scales (202–242 vs. 246–284 in P. gracilis ), ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. white or cream in P. gracilis ), and absence of a collar (yellowish collar present in P. gracilis ); from P. graueri by the number of ventral scales (202–242 vs. 222–262 in P. graueri ), ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. cream or white in P. graueri ), and shape of the preocular (irregular vs. triangular in P. graueri ); from P. griseiceps by the number of ventral scales (202–242 vs. 177–200 in P. griseiceps ) and ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. cream or white in P. griseiceps ); from P. neuwiedi by dorsal coloration and pattern (grayish black or black vs. pale brown with three black stripes in P. neuwiedi ) and ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. white in P. neuwiedi ); from P. notatus by dorsal coloration (grayish black or black vs. pale brown with two series of round black spots in P. notatus ), number of ventral scales (202–242 vs. 181– 200 in P. notatus ), ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. white in P. notatus ), and number of postocular scales (two vs. one or two in P. notatus ); from P. robustus by the shape of the preocular scale (irregular vs. rectangular and long vertically in P. robustus ), lack of a distinct collar (yellowish orange collar present in P. robustus ), shape of the snout laterally (narrow vs. wide in P. robustus ), and number of ventral scales (202–242 vs. 163–189 in P. robustus ); from P. christyi , to which it is morphologically most similar, by the shape of the postocular scales (upper postocular scale is noticeably larger than the lower postocular scale vs. equal-sized postocular scales in P. christyi ) and shape of the nasal scales (square-like vs. irregular shaped in P. christyi ); from P. collaris by lacking a distinct collar (tan or yellow collar present in P. collaris ), the shape of the postocular scales (top postocular scale is noticeably larger than the bottom postocular scale vs. equal-sized postocular scales in P. collaris ), shape of the nasal scales (square-like vs. irregular

shaped in P. collaris ), ventral coloration (grayish black or black with silver-white edging on ventral and subcaudal scales vs. white or cream in P. collaris ), and a narrower head; and also from P. gabonensis by the shape of its preocular scale (irregular vs. elongated and triangular in P. gabonensis ), shape of the postocular scales (top postocular scale is noticeably larger than the bottom postocular scale vs. equal-sized postocular scales in P. gabonensis ), shape of the nasal scales (square-like vs. irregular shaped in P. gabonensis ), a less robust snout, lack of a distinct collar (yellowish light gray collar present in P. gabonensis ), and ventral coloration (grayish black or black with silver-white edging

Downloaded From: https://bioone.org/journals/Copeia on 05 Aug 2024

Terms of Use: https://bioone.org/terms-of-use

on ventral and subcaudal scales vs. creamy yellow lower labials and venter in P. gabonensis ).

Description of the holotype.— ( Figs. 4 View FIG , 5 View FIG , 6 View FIG ; Table 2) Subadult male 254 mm SVL; interocular distance 3.1 mm, pupil round, eye diameter 0.9 mm; no loreal; body cylindrical; tail short (17.0 mm, 6.69% of SVL); body stout; head slightly distinct from neck; dorsally, head slightly wider than neck and progressively narrower towards tip of snout; laterally, head narrow, widest point at back of head and narrower at nostrils; nostrils visible from above; scales smooth and glossy. Supralabials 7 (left)/7 (right), 3 rd –4 th /3 rd –4 th contacting orbit; infralabials 7/7, 1 st on each side in contact behind mental, 1 st –4 th /1 st –4 th contacting anterior chin shields; 1/1 preocular; 2/2 postoculars; temporals 1 þ 1/ 1 þ 1; two internasals; nasal divided; frontal is longer (2.5 mm) than wide (1.6 mm); dorsal scales 15 one head length posterior to jaw rictus, 15 at midbody, and 15 one head length anterior to cloaca; ventrals 211 (Dowling count: 208); cloacal plate divided; all paired subcaudals 20. Maxillary dentition—two small anterior teeth, followed by a very large, deeply grooved fang positioned anterior to eye, followed posteriorly by 12 smaller teeth on each side. These data are nearly identical to those reported by Tilbury and Branch (2014).

Coloration of the holotype in life.— ( Fig. 4 View FIG ) Dorsum and venter uniform glossy grayish black, with ventrals and subcaudals each edged posteriorly in silver white (Tilbury and Branch, 2014). The anterior forked portion of the tongue is silver white, which transitions to grayish black posteriorly.

Coloration of the holotype in preservative.— Dorsum and venter uniform grayish black; slightly lighter in color than found in life.

Variation.— Mensural and meristic variation between the two examined specimens of Polemon ater are shown in Table 2. The paratype (PEM R17452) was a badly damaged adult female. There were no differences between the two specimens in terms of coloration in preservative, as both were uniform grayish black dorsally and ventrally. The female is larger (640 mm SVL), has fewer subcaudals (15), and has a proportionately shorter tail (4.35% of SVL). The largest known specimen (806 mm SVL) is from Solwezi, Zambia ( Broadley et al., 2003). Ventrals were not counted for the paratype because it was badly damaged. Literature records of specimens from southeastern DRC and Zambia report ventral ranges of 202–242 and subcaudal ranges of 15–24 ( de Witte, 1953; Laurent, 1956b; Broadley and Pitman, 1960; Broadley et al., 2003). Broadley and Pitman (1960) and Broadley et al. (2003) noted that specimens from Zambia may have one or two postoculars, and temporal formulas were either 1 þ 1 or 0 þ 1 þ 1. De Witte (1953) reported that a specimen from Upemba National Park in southeastern DRC contained one postocular on the left side, and two postoculars on the right side. Specimens from southeastern DRC and Zambia are reported to be uniformly grayish black, bluish black, or black, both dorsally and ventrally ( de Witte, 1953; Broadley et al., 2003), but Broadley et al. (2003: 95) noted ventral coloration ‘‘may have varying degrees of white on the neck or belly.’’ Laurent (1956b) noted that a young male specimen from Dilolo (Lualaba Province, DRC) still had a distinct grayish collar in preservative, suggesting that juvenile or subadult P. ater might have a distinct collar. Morphometric and meristic

data for examined specimens of Polemon christyi , P. collaris , and P. ater are shown in Table 2.

Habitat.— Specimens of P. ater were collected from localities in or near Brachystegia (i.e., miombo) woodlands of Lualaba Province, DRC ( Fig. 7 View FIG ). The paratype was found dead in a pit in Kalakundi Copper Mine, where it had been killed by mine workers. Specimens from Upemba National Park in southeastern DRC were found in grassland-miombo woodland habitat near tributaries. Specimens from Zambia were found in miombo woodland and in some cases, there was gallery forest in the vicinity, although none of the specimens were found in gallery forests ( Broadley et al., 2003). Specimens for this study were found in elevations ranging from 1189–1472 m. In Upemba National Park, de Witte (1953) found a male specimen as high as 1810 m.

Natural history.— Very little is known about the ecology and natural history of this species. Upon discovery at about 20:00 hrs, the behavior of the holotype was described as ‘‘atractaspoid,’’ but it did not produce the neck flexure posturing that is typical for Atractaspis snakes that are in a defensive mode. However, ‘‘it did thrash and jerk, freeze with body dorsoventrally flattened, and occasionally display a small degree of neck flexion’’ (Tilbury and Branch, 2014: 36). The holotype was kept in captivity for some time after capture, during which it burrowed into soil of its container, but it preferred to shelter under pieces of bark at the surface of the soil. The animal refused offerings of food including earthworms, grasshoppers, newly-metamorphosed toadlets, and geckos

Downloaded From: https://bioone.org/journals/Copeia on 05 Aug 2024

Terms of Use: https://bioone.org/terms-of-use

( Hemidactylus mabouia and Lygodactylus gutturalis ), but eventually it ate one L. gutturalis gecko (Tilbury and Branch, 2014).

Based on the natural history of other species of Polemon , P. ater is likely nocturnal and fossorial, although Hinkel and Fischer (1988) noted that P. christyi in Rwanda can be diurnal or nocturnal. The new species is known to consume snakes that are relatively large. The paratype (PEM R17452) was found with a very large (480 mm SVL) Afrotyphlops schmidti (PEM R17440) in its gut. The Afrotyphlops schmidti was about halfway consumed, but the thickness of this prey item (14.8 mm) exceeded the thickness of the specimen of P. ater (9.8 mm). Broadley et al. (2003) reported a 806 mm P. ater (as P. christyi ) that consumed a 600 mm Crotaphopeltis hotamboeia and a 430 mm P. ater that consumed a 305 mm C. hotamboeia . Broadley et al. (2003) reported that Zambian specimens were usually seen at night after heavy rainfall. Spawls et al. (2018) noted this species may be found in leaf litter or below the surface, and it emerges from underground during the rainy season. Additionally, Spawls et al. (2018) stated that the species is known to consume Afrotyphlops , Leptotyphlops , and C. hotamboeia . Polemon ater is thought to lay eggs, but no clutch details are known (Hinkel and Fischer, 1988; Spawls et al., 2018).

Distribution.— The new species most likely occurs in southeastern DRC, Zambia, west-central Tanzania, and possibly as far north as Burundi ( Broadley and Howell, 1991; Caro et al., 2011; Spawls et al., 2002, 2004, 2018; Tilbury and Branch, 2014). Specimens noted from Rwanda and Malawi (some of

which were found in elevations above 1995 m; de Witte, 1941; Laurent, 1956a; Hinkel and Fischer, 1988; Mercurio, 2007) may be attributable to P. christyi , P. ater , or an unknown species. Specimens noted from northeastern DRC, Uganda, South Sudan, and western Kenya are attributable to P. christyi (Tilbury and Branch, 2014; Wallach et al., 2014; Spawls et al., 2018), but some populations (e.g., Virunga National Park, DRC) require additional study to confirm their identification.

Etymology.— Derived from the Latin atrum in reference to the grayish black or black dorsal and ventral coloration that is present in all known specimens of P. ater .

DISCUSSION

Polemon ater is one of only a few lamprophiid species to be described from Central Africa in recent years (e.g., Greenbaum et al., 2015; Trape and Mediannikov, 2016) and the first species described from the genus in over 70 years. Micrelaps tchernovi was described in 2006, but in recent phylogenetic analyses, the genus was recovered outside the subfamily Aparallactinae (Figueroa et al., 2016; Portillo et al., 2018). As is the case with most species of aparallactines, morphological conservatism is common within Polemon . Meristic characters for several species (e.g., P. collaris , P. christyi , and P. ater ) display considerable overlap, making specimens difficult to distinguish ( Table 2). These species are most easily distinguished by coloration (presence of an

Downloaded From: https://bioone.org/journals/Copeia on 05 Aug 2024

Terms of Use: https://bioone.org/terms-of-use

orange or yellow collar, presence of dorsal stripes), head shape, and head scalation shape ( Figs. 4–6 View FIG View FIG View FIG ).

Morphologically, the most similar species to the newly described P. ater is P. christyi , but the latter species is not sister to the former one, and was recovered in a well-supported clade with P. robustus ( Fig. 1 View FIG ; Portillo et al., 2018). The latter study lacked genetic samples of P. gabonensis , but morphologically, P. gabonensis is readily distinguished by its large, broad snout ( Figs. 5 View FIG , 6 View FIG ; de Witte and Laurent, 1947). Moreover, P. gabonensis also has a distinct, creamy yellow venter that easily distinguishes it from P. ater , and the former species is only known from lowland rainforest, a habitat that is distinct from the miombo woodland/savanna habitat of P. ater ( Broadley and Howell, 1991; Broadley et al., 2003; Chippaux, 2006; Chirio and LeBreton, 2007; Pauwels and Vande weghe, 2008; Portillo et al., 2018; Spawls et al., 2018).

Polemon ater is genetically most similar to P. collaris , and the sister relationship between the two species was strongly supported in maximum likelihood (RAxML) and Bayesian inference (MrBayes and BEAST) analyses ( Fig. 1 View FIG ; Portillo et al., 2018). Morphologically, the two species can usually be distinguished by the grayish black or black dorsal and ventral coloration of P. ater . This contrasts with the vibrant yellow or cream collar (that may fade with age) and contrasting, creamy white venter that seems ubiquitous in many adult specimens of P. collaris ( de Witte and Laurent, 1947; FP, pers. obs.). Polemon collaris was described from ‘‘Macange’’ (¼ Malanje, Malanje Prov., N Angola, 09833 0 S, 16820 0 E) and

characterized (in part, and as its name implies) by a pale collar. An anomalous Angolan sample (PEM R19893), with a very faded grayish collar, grayish black dorsum, and grayish black, white-edged ventrals, showed substantial genetic differentiation (i.e., long branch length) from P. ater and other samples of P. collaris from DRC ( Fig. 1 View FIG ). Its relationship to other Angolan populations possessing a pale collar (e.g., from Malanje, Cazengo,and Pungo-Andongo) awaits further study ( de Witte and Laurent, 1947; FP, pers. obs.). A surprising result from the phylogenetic analyses of Portillo et al. (2018) was the placement of P. christyi , which was recovered as sister to P. robustus . Polemon christyi , P. collaris , P. gabonensis , and P. ater all have similar ranges of ventral scale counts, yet P. christyi was found to be more closely related to P. robustus (Portillo et al., 2018) , which is stockier in build and has substantially fewer ventral scales relative to most congeners ( de Witte and Laurent, 1947).

Polemon christyi has been recorded from Uganda, western Kenya, Virunga National Park (eastern DRC), Upemba National Park (southeastern DRC), Garamba National Park (northeastern DRC), Lualaba Province ( DRC), Central African Republic (record considered doubtful sensu Chirio and Ineich, 2006), Rwanda, Burundi, west-central Tanzania, Zambia, South Sudan, and northeastern Malawi ( Boulenger, 1903, 1911, 1915; de Witte, 1941, 1953, 1955, 1975; de Witte and Laurent, 1943, 1947; Loveridge, 1944; Laurent, 1955, 1956a, 1956b, 1960; Broadley, 1971; Pitman, 1974; Spawls, 1978; Hinkel and Fischer, 1988; Joger, 1990; Broadley and Howell, 1991; Meirte, 1992; Vonesh, 2001; Behangana and

Downloaded From: https://bioone.org/journals/Copeia on 05 Aug 2024

Terms of Use: https://bioone.org/terms-of-use

Goodman, 2002; Broadley et al., 2003; Chippaux, 2006; Mercurio, 2007; Caro et al., 2011; Wallach et al., 2014; Spawls et al., 2018). These records encompass a large geographic area with multiple habitats in different elevations, and in some cases, it is not clear whether the specimens are referable to P. ater , P. christyi , or an unknown species.

Schmidt (1923) described Miodon unicolor (later placed in the synonymy of P. christyi by de Witte and Laurent, 1947) based on a single male specimen from lowland rainforest in Poko (Ituri rainforest), northeastern DRC. This specimen has 202 ventral scales and a uniformly dark bluish gray dorsum, with ventral scales edged with white. Based on these features and its locality, the specimen is likely attributable to P. christyi rather than P. ater . The shape of the nasal and postocular scales (based on the original description) of Miodon unicolor also closely matches that of P. christyi (Schmidt, 1923) . De Witte (1941) described Melanocalamus leopoldi based on a female specimen from montane forest in Rwankeri, Rwanda (2200 m) with 245 ventral scales and fused preocular and prefrontal scales. This specimen contains more ventral scales than the two female specimens of P. christyi examined herein (but within range of Ugandan specimens, sensu Pitman, 1974), and also fused preocular and prefrontal scales, a trait that is not exhibited by either P. ater or Ugandan P. christyi . Laurent (1956a) placed M. leopoldi in the synonymy of P. christyi , but this action was seemingly rejected by de Witte (1962), and based on the absence of a preocular (because of fusion with the prefrontal), Meirte (1992) continued to recognize the former taxon as a valid species, and he retained

Melanocalamus as a subgenus of Polemon . Wagner et al. (2014) also recognized Polemon leopoldi as a distinct species. Although Laurent’s (1956a) action has been accepted by most authorities (e.g., Wallach et al., 2014; Spawls et al., 2018; Uetz et al., 2018), further examination of Rwandan populations is needed to determine with certainty whether M. leopoldi is conspecific with topotypic P. christyi .

Loveridge (1944) noted a specimen of Miodon gabonensis christyi Polemon christyi ) from 4600 feet (1402 m) at Ilolo, located in present-day Ruaha National Park, Tanzania. No distinctive morphological features were noted by Loveridge (1944) for this specimen (MCZ R30401), and because the park contains both miombo woodland and evergreen forest (Mtui et al., 2016), further study is needed to determine the taxonomic status of this population. Several illustrations of the head of a specimen of P. christyi (RGMC 9809) from Usumbura (¼ Bujumbura), Burundi were shown by de Witte and Laurent (1947: figs. 67–69), and Laurent (1960) provided additional records from Uvira and nearby Makobola ( DRC)— these records are intriguing because they are in a floodplain near the shore of Lake Tanganyika (EG, pers. obs.), although it is possible that some gallery forest was intact at the time of collection. Polemon christyi has also been recorded from Garamba National Park in northeastern DRC, but the specific locality and habitat where the specimen was found were not noted by de Witte (1966). Although the park is dominated by grasslands and woodlands, it contains some gallery forest (Hillman Smith et al., 2014). Six specimens of P. christyi reported by de Witte (1955, 1975) from Virunga National Park included Mutsora (savanna habitat, 1200 m) and Indray (‘‘spiny’’ savanna and euphorbia habitat, 900 m), which are relatively xeric habitats in the park. Mercurio (2007) recorded a specimen of P. christyi from montane forest (1995 m) in the Wilindi Forest Reserve, northeastern Malawi. This specimen has six supralabial scales, unlike P. christyi and P. ater , which both have seven supralabials ( Boulenger, 1903; de Witte, 1941, 1953; de Witte and Laurent, 1943, 1947; Laurent, 1956a, 1960; Pitman, 1974; Meirte, 1992; Broadley et al., 2003; Chippaux, 2006; Mercurio, 2007), but otherwise it has similar morphology. Further genetic and morphological examination of the Malawi population is needed to determine whether it represents P. christyi , P. ater , or an unknown species. The montane forest records of P. christyi from Rwanda ( de Witte, 1941) and Malawi (Mercurio, 2007) were both found at higher elevations (2200 m and 1995 m, respectively) than the known elevational range of P. ater (1189–1810 m) or P. christyi (600–1760 m; de Witte, 1941, 1953; Pitman, 1974; Broadley et al., 2003; Mercurio, 2007; Spawls et al., 2018). We thus restrict the known range of P. christyi to forests, and possibly grasslands, woodlands, and savannas, of northeastern DRC, Uganda, South Sudan, and western Kenya. Additional work is needed on the species complex, but because specimens are rare and fieldwork in DRC is problematic for many reasons (Greenbaum, 2017), it will likely be many years before all of these populations can be examined with molecular data.

The BEAST results from Portillo et al. (2018) suggested that P. ater and P. christyi last shared a common ancestor during the early to mid-Miocene (around 16 mya), which coincided with a climactic optimum ( Couvreur et al., 2008; Feakins and Demenocal, 2010). These results also indicated that P. ater diverged from its sister taxon, P. collaris , during the late Miocene (ca. 6 mya), when increasingly cool and arid conditions throughout central and eastern Africa likely fragmented populations of many squamates, eventually

Downloaded From: https://bioone.org/journals/Copeia on 05 Aug 2024

Terms of Use: https://bioone.org/terms-of-use

leading to their speciation (Greenbaum et al., 2018). Other Central African snake groups with similar dates of divergence between sister taxa include the lamprophiid genus Boaedon and viperid genus Atheris (Menegon et al., 2014; Greenbaum et al., 2015).

Interestingly, the species of Polemon that are morphologically similar to P. ater ( P. christyi , P. collaris , and P. gabonensis ) are mainly inhabitants of rainforests. Specifically, Polemon christyi is known from rainforests and associated forest relicts in Uganda, but it might occur in grasslands and woodlands in Garamba National Park, DRC ( de Witte, 1966; Pitman, 1974). Polemon ater inhabits southeastern Lualaba, Haut-Katanga, and Haut-Lomami provinces of DRC, and Zambia, which are dominated by grasslands and miombo woodlands ( de Witte, 1953; Broadley et al., 2003). Within Lualaba, Haut-Katanga, and Haut-Lomami provinces, plant species richness was highest within the miombo ecoregion ( Broadley and Cotterill, 2004), and several unique species of reptiles are known from the region (e.g., Greenbaum et al., 2012; Medina et al., 2016). Polemon ater might have adapted to the miombo woodlands and savannas when arid climates in Africa increased after 9.6 mya (Feakins and DeMenocal, 2010).

Many non-forest habitats in southeastern DRC that are potential habitats of P. ater and other aparallactines (FP, unpubl. data) are exposed to degradation because of poor farming management, uncontrolled fires, mining, and other environmental degradation linked to human population growth. Because of these factors, these habitats are constantly at risk, especially unprotected regions in southeastern DRC miombo woodlands and savannas (Sodhi et al., 2007; Herrmann and Branch, 2013). Additionally, southeastern DRC is known to harbor high species diversity of plants, amphibians, reptiles, and birds ( Broadley and Cotterill, 2004; Greenbaum et al., 2012; Larson et al., 2016; Medina et al., 2016). Given the results herein and from Portillo et al. (2018), it is likely that P. ater is endemic to the grasslands, miombo woodlands, and possibly forests of southeastern DRC, Zambia, and west-central Tanzania. Possible populations in Rwanda, Burundi, and Malawi require further study. Given the proximity of the Dilolo locality (Laurent, 1956b) to the border of DRC, P. ater is likely to be found in neighboring Angola.

PEM

Port Elizabeth Museum

R

Departamento de Geologia, Universidad de Chile

Kingdom

Animalia

Phylum

Chordata

Class

Squamata

Family

Atractaspididae

Genus

Polemon

Loc

Polemon ater

Portillo, Frank, Branch, William R., Tilbury, Colin R., Nagy, Zoltán T., Hughes, Daniel F., Kusamba, Chifundera, Muninga, Wandege M., Aristote, Mwenebatu M., Behangana, Mathias & Greenbaum, Eli 2019
2019
Loc

Polemon christyi

Broadley 2003: 95
2003
Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF