Siphonaria normalis Gould, 1846
publication ID |
https://doi.org/10.11646/megataxa.13.1.1 |
DOI |
https://doi.org/10.5281/zenodo.14989272 |
persistent identifier |
https://treatment.plazi.org/id/0D49832F-FFD3-824D-FF68-FDC2FB8CF935 |
treatment provided by |
Plazi (2025-03-05 09:04:49, last updated 2025-03-07 14:54:03) |
scientific name |
Siphonaria normalis Gould, 1846 |
status |
|
Siphonaria normalis Gould, 1846 View in CoL
( Figs 31A–I, O, S–U View FIGURE 31 , 32A–D View FIGURE 32 )
Siphonaria normalis Gould 1846: 12 View in CoL (type locality: ‘Sandwich Islands’ [Hawaii]).— Gould 1848: 154; 1852: 359; H. Adams & A. Adams 1855 (in 1853–1858): 271; Gould 1856: 13, fig. 468a–b; Hanley 1858b: 152; H. Adams & A. Adams 1863: 271; Paetel 1883: 178; 1889: 429; Pilsbry 1920b: 379; Edmondson 1946: 188, fig. 102a; Hubendick 1946: 63; 1947b: 2, figs 3a–i, 4a–i, 5, 8–10; Morris 1952: 206, pl. 40, fig. 17; Johnson 1964: 116; Cook 1969: 679; Cernohorsky 1972: 210, pl. 60, fig. 2; Cook 1976: 34; Galindo 1977: 416; Coles 1981: 11; Trew 1983: 8; Jenkins 1984: 117; White & Dayrat 2012: 62, 2014: 266; Gonzàlez-Wevar et al. 2018: 5, fig. 1; Krug et al. 2022: 5.
Siphonaria normalis var. lirata View in CoL — Pilsbry 1920b: 37980 (not S. lirata Reeve, 1856 View in CoL ).
Planesiphon soranus Iredale 1940: 441 View in CoL , fig. 20, 21 (type locality: Townsville, Queensland).— White & Dayrat 2012: 67.
Siphonaria ‘ normalis View in CoL group, unit 14’ (in part)— Dayrat et al. 2014: 267, fig. 3 P–S.
Siphonaria cf normalis View in CoL (unit 52)— Ossenbrügger et al. 2023: fig. 2c–o.
Material examined. Type material. Syntype of Siphonaria normalis Gould, 1846 from Hawaii, United States, North Pacific Ocean ; coll. Carpenter ( USNM 15346 , Fig. 31A View FIGURE 31 ) .
Lectotype of P. soranus Iredale, 1940 , present designation, from Townsville Qld , Australia; coll. 1929 ( AM C.103709 , Fig. 31D View FIGURE 31 ). Seven paralectotypes, same data as lectotype ( AM C.124989 ). Two paralectotypes, same data as lectotype ( MV F13840 ).
Other, non-type material. Marquesas: Baie des Vierges , Fatu Hiva , 10°27,84’S, 138°39,97’W ( MNHN IM-2013-74897 p [M570, SK508], IM-2013-74898 p [M569], IM-2013-74899 p [M565]). GoogleMaps Hawaii, Oahu: N end Waikiki Beach, 21°15.743’N, 157°49.307’W ( AM C.584887 p [M293]); GoogleMaps N end Waikiki, 21°16.646’N, 157°50.048’W ( AM C.585622 5p, C.584886 p [SK210], C.585930 p [SK209]). GoogleMaps Maui: Hanakao’o Beach, 20°54.564’N, 156°41.310’W ( AM C.585929 p [M296]); GoogleMaps Makalua-puna Point, 21°54.586’N, 156°41.338’W ( AM C.585555 3p); GoogleMaps Ho’okipa Beach, 20°56.029’N, 156°21.411’W ( AM C.584892 p [SK212]). GoogleMaps Guam: Umatac Bay , N end, 13°17.917’N, 144°39.494’E ( AM C.585325 p C.584869 p [SK142], C.585493 p [M347], C.585494 p [M348]); GoogleMaps Pago Bay , below UoG Marine Lab, 13°25.645’N, 144°47.927’E ( AM C.585996 10+p); GoogleMaps Tanguisson Beach, S end, 13°32.549’N, 144°48.443’E ( AM C.585994 2p, C.584873 p [M343], C.584874 p [M439]). GoogleMaps Fiji, Viti Levu: Vuda Point Marina seawall, 17°40.878’S, 177°23.009’E ( AM C.585970 20+p, C.584866 p [SK115 protoconch C9], C.584867 p [M286], C.584868 p[M287]). GoogleMaps PNG: Sek Is., 05°04,7’S, 145°48,9’E ( MNHN IM-2013-13133 p [M558], IM-2013-13135 p [M562]); GoogleMaps Wonad I., 05°08,1’S, 145°49,3’E ( MNHN IM-2013-15280 p [M563]); GoogleMaps Riwo waters, 05°08,9’S, 145°48,2’E ( MNHN IM-2013-15250 p [M555] IM-2013- 15251 p [M554]). GoogleMaps NC, Lifou: We Baie de Chateaubriand E coast ( AM C.585396 10p, C.584946 p [M388], C.584947 p [M389]). S of Pouebo 20°25.950’S, 164°39.251’E NC04-2 ( AM C.585006 p [M381], C.585007 p [M382]); GoogleMaps Bonhomme de Bourail , La Roche Percee, 21°36.487’S, 165°27.423’E ( AM C.585013 p [M370], C.585014 p [M371]); GoogleMaps Presqu’ile de Ouano La Foa , 20°51.434’S, 165°48.479’E ( AM C.595911 6p). GoogleMaps Australia, Qld: Umagico, 10°53.125’S, 142°20.799’E ( AM C.585178 p [SK195]); GoogleMaps Capt Billy Landing, 11°38.019’S, 142°51.472’E ( AM C.585415 10+p, C.584792 p [M180], C.584793 p [M181], C.584794 p [M402]); GoogleMaps S of Bathurst Head, 14°17.583’S, 144°11.845’E ( AM C.585348 10p); GoogleMaps Lizard Is, bch rock, 14°40.730’S, 145°26.838’E ( AM C.585643 5p); GoogleMaps Lizard Is, 14°40.908’S, 145°27.007’E ( AM C.585566 4p, C.585175 p [M030]); GoogleMaps Cape Kimberley, 16°16.535’S, 145°28.737’E ( AM C.585720 9p, C.585168 p [M041], C.585169 p [M394], C.585170 p [M395], C.585171 p [M397]); GoogleMaps Pebbly Beach Yule Reef Trinity Bay , 16°35.031’S, 145°30.823’E ( AM C.585703 8p); GoogleMaps Gribble Pt Mission Bay Yarrabah, 16°53.781’S, 145°51.852’E ( AM C.585347 p); GoogleMaps Mourilyan Harbour, 17°35.951’S, 146°07.583’E ( AM C.585411 10+p, C.585155 p [M012], C.585156 p [SK123]); GoogleMaps W side Kissing Pt Townsville, 19°14.332’S, 146°48.040’E ( AM C.585672 6p, C.585146 p [M083], C.585147 p [M186], C.585148 p [M187], C.585149 p [M188], C.585931 p [SK197], C.585932 p [SK075]); GoogleMaps Slade Pt Mackay, 21°03.813’S, 149°13.527’E ( AM C.585501 2p). GoogleMaps Gulf of Carpentaria: Mutee Head, 10°54.682’S, 142°15.204’E ( AM C.585416 10p); GoogleMaps Weipa, 12°37.795’S, 141°51.853’E, Q52-1 ( AM C.585450 12p); GoogleMaps Sweers Is: 17°07.029’S, 139°35.805’E ( AM C.585645 5p), GoogleMaps 17°07.413’S, 139°35.816’E, Q56-2 ( AM C.585350 p), GoogleMaps Inspection Pt, 17°08.471’S, 139°36.868’E ( AM C.585417 15+p). GoogleMaps NT: Cape Wirawawoi Nhulunbuy, 12°09.513’S, 136°46.904’E ( AM C.585530 20+p); GoogleMaps Sandy Is Pt 11°07.862’S, 132°11.187’E ( AM C.585406 10+p); GoogleMaps Smith Pt 2, 11°07.466’S, 132°08.538’E ( AM C.585636 5p); GoogleMaps Luxmore Hd Melville Is, 11°20.639’S, 130°23.149’E ( AM C.585349 7p); GoogleMaps Nightcliff Darwin, 12°22.836’S, 130°50.402’E ( AM C.585977 10+p); GoogleMaps Cox Peninsula, 12°24.824’S, 130°40.921’E ( AM C.585978 10+p); GoogleMaps N of Native Pt Dundee Bch, 12°42.182’S, 130°20.881’E ( AM C.585668 6p); GoogleMaps Native Pt oyster reef Dundee Bch, 12°42.906’S, 130°20.653’E ( AM C.585413 8p); GoogleMaps Native Pt reef Dundee Bch, 12°42.981’S, 130°20.807’E ( AM C.585381 10p) GoogleMaps .
Taxonomic remarks. Siphonaria normalis was subsequently figured by Gould (1856: 13, pl. 30, figs 468, 468a–b). The syntype corresponds well with this figure in shell profile, dimensions and colouration. The description of P. soranus does not contain an original type designation. The figured specimen of P. soranus ( Iredale, 1940: pl. 34, figs 20–21) is herein designated as the lectotype for the stabilisation of the name ( AM C.103709). Our delineation of this species is based on comparative analyses of the morpho-anatomy and mitochondrial genetics of freshly collected topotypes of S. normalis and P. soranus and geographic series of additional specimens (Table S1). We stablish P. soranus as a junior synonym of S. normalis .
Pilsbry (1920b: 379) erroneously considered S. amara , S. nuttallii , S. lirata , S. crebricostata and S. normalis f. chirura as synonyms of S. normalis . This was followed by Cernohorsky (1972: 210). Dayrat et al. (2014: 267) recognised several independent molecular units within the normalis group (i.e., unit 12 from Thailand, unit 13 from Singapore, and unit 14 from Hawaii). These units are herein recognised as three distinct species, S. radiata (unit 12), S. costellata sp. nov. (unit 13), and S. normalis (unit 14).
External morphology. Foot sole, foot wall, mantle, cephalic folds and pneumostomal lobe evenly pale grey/cream, paler at edge foot/wall; blotches of black pigmentation on centre of cephalic folds, faintly on foot wall; mantle narrower than width of foot wall, non-translucent, covers exposed inner shell lip, edge thickened, lobed, vertical bands of black pigmentation aligned with shell rib interstices; genital pore indistinct, located on foot wall to right anterior of right cephalic fold; two small black epithelial eye spots centralised on two centrally touching cephalic folds; pneumostomal lobe long under the mantle between the right ADMs.
Shell ( Figs 31A–I, O, S–U View FIGURE 31 ; Table S9). Small sized (max sl mean = 12.56 mm, SD = 2.02 mm, n = 13), circular ovate; height medium to tall; apex offset posterior and weakly left, apical sides straight to weakly convex, shell edge; protoconch direction heterostrophic, initially hooked (n = 4; Fig. 31S–T View FIGURE 31 ), shell whorl dextral; growth striae prominent, radial colour banding often present, shell thickness thick; rib count (mean = 33, SD = 0.87, n = 13), primary ribs distinct, white to pale, usually radially evenly spread, fairly straight, broaden to and align with fairly flat faintly scalloped shell edge; ribs may be raised or flat,; 1–2 interspersed pale white finer secondary ribs, rib interstices darker; paired primary ribs on siphonal ridge, no more prominent than other primary ribs. Interior shell margin varies from pale tan to dark brown; white rays extend from the shell lip to over the shell margin fading to the spatula, align under primary/secondary ribs, spatula varies from pale yellow ( Fig. 31E View FIGURE 31 ), pale tan ( Fig. 31B View FIGURE 31 ) to dark chocolate brown ( Fig. 31F View FIGURE 31 ); siphonal groove distinct, paler than shell margin or spatula; ADM scar distinct, CMS straight, paler than shell lip; thickening of shell lip common, margin becomes whitened ( Fig. 31E View FIGURE 31 ).
Reproductive system ( Figs 32A, C; n View FIGURE 32 = 9). Positioned within coelom under the respiratory cavity, hermaphroditic glands positioned to posterior against right foot wall and over foot sole, epiphallic parts positioned to anterior between BM and RAM; GP small, singular, positioned through foot wall behind right cephalic fold, GA small, prominent; AO very small, short, narrow, blunt, slightly bent centrally, joins to top of GA in conjunction with ED; ED short, broad, joins to back side of GA alongside AO; single short broad blunt flagellum (F1), longer than and same width as ED, join of F1 to ED indistinct, marked by connection of very small white folded EG; AO, GA and ED all muscular white tissue; BD and CD connect closely side-by-side into GA between connections of ED and AO, both ducts narrow smooth featureless, pass together through RAM connecting into MG ( BD above CD), BD longer than CD, often loop immediately in front of BC; BC large to medium, spherical, embedded in folds of MG, test translucent; SV embedded on left side of AG; HD short, thick coils, links AG to smaller yellowish granular HG; MG and AG folded, soft white tissue; sides match curvature of inner foot wall on right posterior of coelom; outer edge of MG lobed.
Spermatophore ( Figs 32B, D View FIGURE 32 ). Broad head with short flagellum (length = 2.47 ± 0.195 mm, n = 3); head section cylindrical, bulbous, centrally bent, rounded tip; test thin, smooth, featureless, translucent encasing a white opaque central core; short tapering section (often looped) merges head to filamentous flagellum; head slightly shorter, wider than translucent flagellum (head length = 1.23 ± 0.45 mm, flagellum length = 1.24 ± 0.34 mm, SPM head ~ 49% of total lenght; head width = 110 ± 13 μm, flagellum width = 11 ± 0 μm, n = 3); up to 9 SPMs tightly coiled in BC of topotypic specimens ( AM C.585930).
Comparative remarks. Siphonaria normalis ( normalis group, unit 14) is the sister species of a clade containing S. fuliginata and S. madangensis sp. nov. ( Figs 1 View FIGURE 1 , 4 View FIGURE 4 ). These three species are closely related and differ from each other by COI distances of ≥ 5.9% ( S. fuliginata , unit 80) and ≥ 5.6% ( S. madangensis sp. nov., unit 88) (Table S8). Two other closely related species are S. campestra sp. nov. (unit 86, COI distance ≥ 18.6%) and S. costellata sp. nov. (unit 13, COI distance ≥ 7.8%) (Table S8).
Siphonaria campestra sp. nov. differs in having a shell with slightly broader ribs, predominantly primary and few secondary ribs, slightly more scalloped shell edge, darker interior, a smaller AO, shorter ED, and a thicker SPM. Siphonaria fuliginata has a much paler, thicker shell, less scalloped edge, a thicker BD, smaller BC, shorter and narrower ED, and a shorter SPM.
Throughout the range of S. normalis we found twentyseven congeners to occur in partial sympatry. Siphonaria gemina sp. nov. has a smaller shell with stronger raised ribbing and edge scalloping, more prominent siphonal ridge, a larger AO and GA, a shorter, wider BD, and a wider SPM. Siphonaria mauiensis sp. nov. (sympatric in Hawaii) has a smaller shell with more raised ribbing and weaker edge scalloping, a smaller BC, shorter BD, and a shorter SPM. Siphonaria nuttallii (sympatric in Hawaii) has a taller shell with a more central apex, slightly greater raised ribbing, stronger edge scalloping, more prominent and multi ribbed siphonal ridge, a larger AO, smaller BC, broader BD, and a longer SPM. Eight congeners are sympatric in Fiji and NC. For comparison with S. atra refer to comparative remarks under that species. Siphonaria hienghenensis sp. nov. has a larger, taller, paler shell with a more prominent siphonal ridge and centralised apex, a larger AO, shorter ED and a smaller BC. Siphonaria monticulus has taller shell with slightly more raised and even ribbing, paler interior, a larger AO and a longer ED. Siphonaria namukaensis sp. nov. has a paler shell with more central apex, more prominent siphonal ridge, paler golden spatula, a larger AO and a smaller BC. Siphonaria caledonica sp. nov. has a taller shell with interstice markings, a darker interior, a larger AO and ED, and a smaller BC. Siphonaria bourailensis sp. nov. has a taller, paler shell with more prominent raised ribbing, stronger edge scalloping, a larger AO, and a smaller BC. Siphonaria poindimiensis sp. nov. has a taller shell with more prominent raised ribbing, stronger edge scalloping, a larger AO and ED, and a smaller BC. Siphonaria vudaensis sp. nov. has a larger shell with narrower ribbing, a more prominent and flared siphonal ridge, stronger edge scalloping, a larger AO, and a smaller BC. Three congeners are sympatric in Guam. Siphonaria guamensis has a slightly darker shell with finer and raised ribbing, paler margin, and darker spatula, a longer AO and ED, a smaller BC, and a longer SPM. Siphonaria lirata has a shell with finer raised ribbing, a larger AO, broader ED, and a smaller BC. Siphonaria tanguissonensis sp. nov. has a slightly darker shell with finer and raised ribbing, paler margin, and darker spatula, a smaller BC, shorter BD, and longer SPM,
Four congeners are sympatric in PNG.For comparison with S. javanica refer to comparative remarks under that species. Siphonaria madangensis sp. nov. has a smaller shell with more raised ribbing and stronger edge scalloping, a smaller, less prominent AO, smaller ED, larger BC, longer narrower BD, and a very similar but shorter SPM. Siphonaria recurva sp. nov. has a darker shell with more prominent white ribbing and weaker edge scalloping, a larger AO and BC, and longer ED and F1. Siphonaria viridis has a taller shell with dark patterning and distinct dual siphonal ridge, a larger AO, smaller BC, and longer SPM.
Seven congeners occur sympatrically throughout Australia. Siphonaria costellata has a browner shell with more raised ribbing, prominent siphonal ridge, a longer BD, and longer SPM. Siphonaria gemina sp. nov. has a slightly taller darker shell with more raised ribbing, stronger edge scalloping, a smaller BC, and shorter BD. Siphonaria jiigurruensis sp. nov. has a taller darker shell with more prominent primary ribbing, red-brown patterning, a larger AO, smaller BC, longer and broader ED, and a longer SPM. Siphonaria oblia has a far smaller, darker, browner, and more fragile shell with unraised ribbing, apex strongly offset, a smaller AO, BD without distal loop, and larger ED and BC ( Jenkins 2018: 278, fig. 3C–D). Siphonaria opposita has a larger, lower shell with more prominent and flared siphonal ridge, central apex, stronger edge scalloping, a larger AO and ED. Siphonaria scabra has a larger, darker shell, greater raised ribbing, more prominent siphonal ridge, a larger AO, and a longer SPM. Siphonaria alba is sympatric in Singapore. It has a larger, darker shell with more prominent siphonal ridge, stronger edge scalloping, a larger AO, longer ED, and a longer SPM.
Siphonaria normalis has a very wide distribution spanning from the northern to the southern Tropical Pacific ( Fig. 25 View FIGURE 25 ). We have not found any discontinuities in the ranges of anatomical, morphological, or mitochondrial variation that may suggest that this species as currently delineated may represent a species complex.
The SPM of S. normalis resembles that of S. radiata and S. gemina sp. nov. Hubendick (1946: 30–32, 63) considered Parellsiphon soranus from Townsville, N Qld (= S. normalis ) as of questionable status and possible synonym of S. acmaeoides for the ‘considerable resemblance’ in shell characters. Figured specimens of S. normalis in Hubendick (1947b: 2, fig 3b–i, 4b–i) appear to be a mixture of S. normalis (figs 3a–d, i) and S. waikoloaensis sp. nov. (figs 3f–h). The RS figured by Hubendick (1947b: 2, fig 5) closely matches that of S. waikoloaensis sp. nov. Figured specimens of ‘ S. normalis ’ from Oahu, Hawaii in Hubendick (1947b: 2, fig 3a–I, 4a–i) closely match S. normalis rather than S. mauiensis sp. nov. (finer ribbing, dark interior), S. nuttallii (usually paler interior, ribbing different), S. undans sp. nov. (distinct ribbing) or S. waikoloaensis sp. nov. (distinct ribbing). While Hubendick (1947b: 2) stated that the specimen depicted in figs 3a, 4a ‘except for its size, agrees with S. nuttalli [ sic nuttallii ]’. However, it differs from types of S. nuttallii . The figured specimen of ‘ S. cf normalis ’ in Maes (1967: 154, pl. 14, fig. L, from CKI) is a specimen of S. gemina sp. nov. The figured specimen of ‘ S. normalis ’ from Lomalagi, Fiji in Cernohorsky (1972: 210, pl. 60, fig. 2) matches S. normalis depicted herein. The figured specimen of ‘ S. normalis ’ in Kay (1979: 493, figs 157I–J) is a misidentification of S. nuttallii . The figured specimens of ‘unit 14’ in Dayrat et al. (2014: figs 3P, 5Q, 3R, 3S) closely resemble S. normalis as delineated herein.
Distribution and habitat. Widespread through tropical Pacific Ocean, including Society Islands, Gambier Islands, Marquesas, Hawaii, Nauru to Guam, American Samoa, Santa Cruz Islands, Solomon Islands, NC, PNG, northern Australia (Cape York through to Broome, Kimberley, WA), and Timor-Leste. In the Indian Ocean recorded from Praslin Island, Seychelles ( Ossenbrügger et al. 2023). In this study found to be rather common in sheltered positions on exposed rocky shores at upper littoral levels in Australia, Fiji, New Caledonia, Hawaii, and Guam ( Fig. 25 View FIGURE 25 ).
Cernohorsky, W. O. (1972) Marine shells of the Pacific, Vol. II. Pacific, Sydney, 411 pp.
Coles, J. (1981) A checklist of the Molluscs of the Cook Islands. Poiriera, 11 (1), 7-11.
Cook, S. B. (1969) Experiments on homing in the limpet Siphonaria normalis. Journal of Animal Behaviour, 17 (4), 679-682. https://doi.org/10.1016/S0003-3472(69)80012-6
Cook, S. B. (1976) The role of the ' home scar' in pulmonate limpets. Bulletin of American Malacological Union, 42 nd Annual Meeting, 34-37.
Dayrat, B., Goulding, T. C. & White, T. R. (2014) Diversity of Indo-West Pacific Siphonaria (Mollusca: Gastropoda: Euthyneura). Zootaxa, 3779 (2), 246-276. https://doi.org/10.11646/zootaxa.3779.2.7
Edmondson, C. H. (1946) Reef and shore fauna of Hawaii. Special Publication of the Bernice P. Bishop Museum, 22, 1-381, figs 1 - 223.
Galindo, E. S. (1977) Index and register of seashells. Thomas C. Rice, Port Gamble, Washington, 524 pp.
Gonzalez-Wevar, C. A., Segovia, N. I., Rosenfeld, S., Ojeda, J., Hune, M., Naretto, J., Saucede, T., Brickle, P., Simon Morley, S., Feral, J. - P., Spencer, H. G. & Poulin, E. (2018) Unexpected absence of island endemics: Long-distance dispersal in higher latitude sub-Antarctic Siphonaria (Gastropoda: Euthyneura) species. Journal of Biogeography, 45 (4), 874-884. https://doi.org/10.1111/jbi.13174
Gould, A. A. (1846) Descriptions of new shells, collected by the United States Exploring Expedition. Proceedings of the Boston Society of Natural History. 2: 141-145, 148 - 152 [July]; 153 - 156, 159 - 162, 165 - 167 [August]; 170 - 173, 175 - 176 [September]; 177 - 179, 180 - 184, 185 - 187, 190 - 192 [November].
Gould, A. A. (1848) [Descriptions of new species of Siphonaria, Emarginula and Fissurella from the shells of the Exploring Expedition]. Proceedings of the Boston Society of Natural History, 2, 153-155.
Gould, A. A. (1852) Mollusca & Shells. United States Exploring Expedition. During the Years 1838, 1839, 1840, 1841, 1842, Under the Command of Charles Wilkes, U. S. N., 12, Gould & Lincoln, Boston, 509 pp.
Gould, A. A. (1856) Atlas. United States Exploring Expedition. During the Years 1838, 1839, 1840, 1841, 1842. Under the Command of Charles Wilkes, U. S. N., 12, Gould & Lincoln, Boston, 14 pls.
Hanley, S. (1858 b) On Siphonaria. Proceedings of the Zoological Society of London, 26, 151-153. https://doi.org/10.1111/j.1469-7998.1858.tb06367.x
Hubendick, B. (1946) Systematic monograph of the Patelliformia. Kunglige Svenska Ventenskapsakademiens Handlingar, Ser. 3, 23 (5), 1-92.
Hubendick, B. (1947 b) On a new Siphonaria from New Guinea, on Siphonaria normalis Gould and on the structure of the epiphallus gland in Siphonariidae. Bulletin du Musee royal d'histoire naturelle de Belgique, 23 (19), 1-8.
Iredale, T. (1940) Marine molluscs from Lord Howe Island, Norfolk Island, Australia and NC. Australian Zoologist, 9 (4), 429-443, pls 32 - 34.
Jenkins, B. W. (1984) A new siphonariid (Mollusca: Pulmonata) from south-western Australia. Journal of the Malacological Society of Australia, 6 (3 - 4), 113-123. https://doi.org/10.1080/00852988.1984.10673964
Jenkins, B. W. (2018) Revision of the genus Pugillaria Iredale, 1924 (Mollusca: Panpulmonata: Siphonariidae), Molluscan Research, 38 (4), 274-286. https://doi.org/10.1080/13235818.2018.1457418.
Johnson, R. I. (1964) The Recent Mollusca of Augustus Addison Gould. Bulletin of the United States National Museum, 239, 1-182. https://doi.org/10.5479/si.03629236.239
Kay, E. A. (1979) Hawaiian Marine Shells. Reef and shore fauna of Hawaii. Section 4: Mollusca. Bernice P. Bishop Museum Special Publication, 64 (4), 1-652.
Krug, P. J., Caplins, S. A., Algoso, K., Thomas, K., Valdes, A. A., Wade, R., Wong, N. L. W. S, Eernisse, D. J. & Kocot, K. M. (2022) Phylogenomic resolution of the root of Panpulmonata, a hyperdiverse radiation of gastropods: new insight into the evolution of air breathing. Proceedings of the Royal Society B 289: 20211855. https://doi.org/10.1098/rspb.2021.1855
Maes, V. O. (1967) The littoral marine mollusks of Cocos-Keeling Islands (Indian Ocean). Proceedings of the Academy of Natural Sciences Philadelphia, 119 (4), 93-217.
Morris, P. A. (1952) A field guide to shells of the Pacific coast and Hawaii. Houghton Mifflin. Boston, pp. 1-220.
Ossenbrugger, H., Neiber. M. T. & Hausdorf, B. (2023) Diversity of Siphonaria Sowerby I, 1823 (Gastropoda, Siphonariidae) in the Seychelles Bank and beyond. Zoologica Scripta, 51, 31-45.
Paetel, F. (1883) Catalog der Conchylien-Sammlung. Paetel, Berlin, 271 pp. https://doi.org/10.5962/bhl.title.10590
Paetel, F. (1889) Catalog der Conchylien-Sammlung. Paetel, Berlin, 505 pp.
Pilsbry, H. A. (1920 b) Marine Molluscs of Hawaii - XIV, XV. Proceedings of the Academy of Natural Sciences of Philadelphia, 72, 360-382.
Reeve, L. A. (1856) Monograph of the genus Siphonaria. In: Reeve, L. A. (Ed.), Conchologia Iconica, or, illustrations of the shells of molluscous animals, vol. 9. L. Reeve, London, unpaginated text, pls. 1-7.
Trew, A. (1983) The Melvill-Tomlin Collection. Part 16 Siphonariacea. Handlists of the Molluscan collections in the Department of Zoology, National Museum of Wales. Series 1. National Museum of Wales. Cardiff.
White, T. R. & Dayrat, B. (2012) Checklist of genus- and species-group names of false limpets Siphonaria (Mollusca: Gastropoda: Euthyneura). Zootaxa, 3538 (1), 54-78. https://doi.org/10.11646/zootaxa.3538.1.2
FIGURE 1. Maximum Likelihood phylogram based on analyses of a concatenated sequence data set of 16S and COI. Branches are collapsed at the species level. Branch labels give unit numbers and accepted species names. Numbers on branches indicate branch support employing 10,000 ultrafast bootstraps.Available genus-group names are shown next to their type species. Scale bar indicating modelled sequence divergence.
FIGURE 4. Maximum Likelihood phylogram (partial, species not collapsed). Clades C–F (normalis, lateralis and pectinata groups) of the tree shown in Fig. 1. Branch labels give specimen identifiers for new sequences or Genbank accession numbers for imported sequences from other studies and geographic regions (see Tables S1–S2 for details). Identical haplotypes are merged into single tips. Numbers on branches indicate branch support by employing 10,000 ultrafast bootstraps. Clade names give unit numbers and accepted species names. Scale bar indicating modelled sequence divergence.
FIGURE 25. Known occurrence records of S. viridis, S. normalis, S. radians, S. scabra, S. funiculata, S. kurracheensis and S. carbo.
FIGURE 31. Shells of S. normalis, S. radians and S. scabra. A–I, O, S–U. S. normalis, A. Hawaii, syntype USNM 15346. B. Maui, TS, AM C.585929 [M296, SK240]. C. Oahu, TS, AM C.585930 [SK209]. D. Probable holotype of P. soranus AM C.103709. E. Qld, Townsville, TS of P. soranus AM C.585932 [SK075]. F. Qld, Cape York Peninsula, AM C.584792 [M180]. G. Marquesas, Fatu Hiva, IM-2013-74897 [M570]. H. PNG, Riwo waters, IM-2013-15250 [M555]. I. PNG, Wonad Is, IM-2013-15280 [M563]. O. Probable paratype of P. soranus MV F13840, S. Protoconch, Maui, AM C.584892 [SK212]. T. Protoconch, Qld, Cape York, AM C.585178 [SK195]. U. Hawaii, in situ. J–K. S. radians. J. Indonesia, Riau Islands, Neotype ZRC.MOL.24912 [M519]. K. Malaysia, ZRC.MOL.24894 [M594, SK526]. L–N, P–R, V–W. S. scabra. L. Lectotype NHMUK 1981011/1. M. NSW, Sydney Harbour, TS, AM C.585061 [M152]. N. AM C.585114 [M154]. P–R. Paralectotypes NHMUK 1981011/2-4. V. NSW, in situ. W. Protoconch, AM C.585062 [SK169]. Unlabelled scale bars = 10 mm.
FIGURE 32. Reproductive morphology of S. normalis and S. scabra. A–D. S. normalis A–B. Hawaii, Oahu, TS, AM C.585930 [SK209]. C. Guam, Umatac Bay, AM C.584872 [M346, SK142]. D. Hawaii, Maui, TS, AM C.585929 [M296, SK240]. E–F. S. scabra, NSW, Sydney Harbour, TS, AM C.585114 [M154, SK236]. Scale bars = 1 mm.
AM |
Australian Museum |
MV |
University of Montana Museum |
MNHN |
Museum National d'Histoire Naturelle |
BM |
Bristol Museum |
GP |
Instituto de Geociencias, Universidade de Sao Paulo |
MG |
Museum of Zoology |
SPM |
Sabah Parks |
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
Order |
|
Family |
|
Genus |
Siphonaria normalis Gould, 1846
Jenkins, Bruce & Köhler, Frank 2024 |
Siphonaria ‘ normalis
Dayrat, B. & Goulding, T. C. & White, T. R. 2014: 267 |
Planesiphon soranus
White, T. R. & Dayrat, B. 2012: 67 |
Iredale, T. 1940: 441 |
Siphonaria normalis var. lirata
Pilsbry, H. A. 1920: 37980 |
Siphonaria normalis
Krug, P. J. & Caplins, S. A. & Algoso, K. & Thomas, K. & Valdes, A. A. & Wade, R. & Wong, N. L. W. & Eernisse, D. J. & Kocot, K. M. 2022: 5 |
Gonzalez-Wevar, C. A. & Segovia, N. I. & Rosenfeld, S. & Ojeda, J. & Hune, M. & Naretto, J. & Saucede, T. & Brickle, P. & Simon Morley, S. & Feral, J. - P. & Spencer, H. G. & Poulin, E. 2018: 5 |
White, T. R. & Dayrat, B. 2012: 62 |
Jenkins, B. W. 1984: 117 |
Trew, A. 1983: 8 |
Coles, J. 1981: 11 |
Galindo, E. S. 1977: 416 |
Cook, S. B. 1976: 34 |
Cernohorsky, W. O. 1972: 210 |
Cook, S. B. 1969: 679 |
Johnson, R. I. 1964: 116 |
Morris, P. A. 1952: 206 |
Hubendick, B. 1947: 2 |
Edmondson, C. H. 1946: 188 |
Hubendick, B. 1946: 63 |
Pilsbry, H. A. 1920: 379 |
Paetel, F. 1889: 429 |
Paetel, F. 1883: 178 |
Hanley, S. 1858: 152 |
Gould, A. A. 1856: 13 |
Gould, A. A. 1852: 359 |
Gould, A. A. 1848: 154 |
Gould, A. A. 1846: 12 |