Macropodidae Gray, 1821
publication ID |
https://doi.org/10.1206/0003-0090.457.1.1 |
DOI |
https://doi.org/10.5281/zenodo.7036181 |
persistent identifier |
https://treatment.plazi.org/id/03EFDD5D-F6C6-68D6-DAED-FCEB1E21FADB |
treatment provided by |
Felipe (2022-08-07 14:35:17, last updated 2024-11-26 19:59:02) |
scientific name |
Macropodidae Gray, 1821 |
status |
|
Macropodidae Gray, 1821 View in CoL
CONTENTS: † Bohra , Dendrolagus , Dorcopsis , Dorcopsulus , † Ganguroo , † Hadronomas , Lagorchestes , Lagostrophus (fig. 53), Macropus , Notamacropus , Onychogalea , Osphranter , Petrogale , † Rhizosthenurus , Setonix , Thylogale , and Wallabia .
STEM AGE: 19.3 Mya (95% HPD: 18.0–22.0 Mya).
CROWN AGE: 18.2 Mya (95% HPD: 17.8–19.7 Mya).
UNAMBIGUOUS CRANIODENTAL SYNAPOMORPHIES: Parietal and alisphenoid in contact on lateral aspect of braincase (char. 26: 1→0; ci = 0.071); principal labial and lingual cusps of upper molars connected by well-developed lophs (char. 144: 1→2; ci = 0.200); midpoints of protoloph and metaloph connected by a “midlink” (char. 145: 0→1; ci = 0.500); and entocristid indistinct or absent (char. 176: 0→1; ci = 0.077).
COMMENTS: As already discussed, monophyly of Macropodidae (sensu Kear and Cooke, 2001) was not supported in our undated total-evidence analysis (fig. 32) due to the surprising (and almost certainly erroneous) position of the balbarids † Balbaroo and † Ganawamaya in a clade with the macropodids Dorcopsis , Dorcopsulus , † Ganguroo , † Hadronomas , and † Rhizosthenurus . The following discussion therefore applies to the clade recovered by our dated total-evidence analysis ( fig. 33), in which balbarids were constrained to fall outside Macropodidae + Potoroidae , in agreement with all recent published phylogenetic analyses focused on macropodiform relationships ( Kear and Cooke, 2001; Cooke, 2006; Kear et al., 2007; Kear and Pledge, 2008; Bates et al., 2014; Black et al., 2014c; Travouillon et al., 2014b, 2015 a, 2016, 2022; Cooke et al., 2015; Butler et al., 2016, 2018; den Boer and Kear, 2018). Contact of the parietal and alisphenoid on the lateral aspect of the braincase, which optimizes as an unambiguous synapomorphy of Macropodidae in our dated total-evidence analysis, is a consistent feature among macropodids and its relevance for macropodiform systematics has often been discussed ( Pearson, 1950; Archer, 1984c; Case, 1984; Flannery et al., 1984; Flannery and Archer, 1987b, 1987c; Flannery, 1989; Burk et al., 1998; Cooke, 1999, 2000; Kear and Cooke, 2001; Kear et al., 2007; Prideaux and Warburton, 2010). However, alisphenoid-parietal versus frontal-squamosal contact is highly homoplastic within Marsupialia as a whole (see char. 26) with a very low consistency index (0.071, see above), and the presence of alisphenoid-parietal contact in the fossil hypsiprymnodontid Hypsiprymnodon † bartholomaii indicates that this character is also homoplastic within Macropodiformes ( Flannery and Archer, 1987b, 1987c; Flannery, 1989; Burk et al., 1998; Cooke, 1999, 2000; Kear et al., 2007). Presence of well-developed lophs connecting the principal labial and lingual cusps of the upper molars also optimizes as a synapomorphy of Macropodidae , as does presence of a midlink, but this may be influenced by our decision to enforce monophyly of Macropodidae + Potoroidae to the exclusion of Balbaridae (which are also fully lophodont and have a midlink; see chars. 144, 145 and “† Balbaridae ” above). Nevertheless, Cooke (1997a, 1997 b, 1997c) presented evidence that macropodids and balbarids did indeed independently acquire fully lophodont molars.
Our dated analysis placed the fossil terminals † Ganguroo , † Hadronomas , and † Rhizosthenurus within total-clade Macropodidae but outside the crown clade (= Lagostrophus + Macropodinae). Of these, † Hadronomas and † Rhizosthenurus are currently recognized as plesiomorphic members of the extinct macropodid subfamily † Sthenurinae ( Murray, 1991, 1995; Kear and Cooke, 2001; Kear, 2002; Kirkham, 2004; Prideaux, 2004; Prideaux and Warburton, 2010), which achieved considerable diversity during the Plio-Pleistocene ( Long et al., 2002; Prideaux, 2004; Prideaux and Warburton, 2010; Black et al., 2012b; Couzens and Prideaux, 2018). The placement of † Hadronomas and † Rhizosthenurus in a clade that falls outside crown-clade Macropodidae here is congruent with their membership in † Sthenurinae .
Within the macropodid crown clade, we found Lagostrophus (the only extant lagostrophine) to be sister to our remaining terminals (which collectively comprise Macropodinae). By contrast, other studies have placed Lagostrophus in a clade with sthenurines ( Flannery, 1983, 1989; Llamas et al., 2015: fig. 1c; Cascini et al., 2019) or outside †Sthenurine + Macropodinae ( Prideaux and Warburton, 2010; Prideaux and Tedford, 2012; Llamas et al., 2015: fig. 1a). The topology found here may be the result of our use of the Fossilized Birth Death model (see Dated Total-Evidence Analysis in the Discussion section for more detail), with † Rhizosthenurus (late Miocene) and † Hadronomas (late Miocene or earliest Pliocene) recovered as branching deeper within Macropodidae than the extant Lagostrophus . This hypothesis could be tested by inclusion of younger sthenurines or older lagostrophines; however, whereas well-preserved remains of sthenurines are known from the Pleistocene ( Prideaux, 2004), the oldest known lagostrophine (the Pliocene † Tjukuru wellsi ) is known only from a single partial lower jaw ( Prideaux and Tedford, 2012).
As discussed above (see Macropodidae + Potoroidae ), the oldest known macropodids appear to be the “bulungamayines” † Bulungamaya , † Cookeroo , † Ganguroo , and † Wabularoo , which are known from the late Oligocene (Faunal Zone A) sites at Riversleigh World Heritage Area ( Cooke, 1997 b, 1997 c, 2006; Travouillon et al., 2014b; Butler et al., 2016, 2017). However, these taxa consistently fall outside crown-clade Macropodidae (as found for † Ganguroo here) in published analyses ( Kear et al., 2001a, 2001 b, 2007; Kear and Cooke, 2001; Kear, 2002; Kear and Pledge, 2008; Prideaux and Warburton, 2010; Prideaux and Tedford, 2012; Black et al., 2014c; Phillips, 2015; Travouillon et al., 2014b, 2015 a, 2016; Butler et al., 2016, 2018; Cascini et al., 2019). Thus, they do not provide insight on the timing of divergences within the macropodid crown clade ( Phillips, 2015). We estimate the split between Lagostrophinae and Macropodinae to have occurred during the middle or late Miocene, with Macropodinae beginning to radiate during the late Miocene. These estimated dates are congruent with the known fossil record ( Couzens and Prideaux, 2018): the oldest crownclade macropodid currently known is probably the fossil dorcopsin macropodine † Dorcopsoides fossilis from the late Miocene Alcoota Local Fauna in the Northern Territory ( Woodburne, 1967; Prideaux and Warburton, 2010; Butler et al., 2018). They are also broadly similar (but overall somewhat younger) to dates from recent molecular- and total-evidence clock analyses ( Meredith et al., 2009a, 2009b; Llamas et al., 2015; Mitchell et al., 2014; Dodt et al., 2017; Nilsson et al., 2018; Cascini et al., 2019; Celik et al., 2019; Álvarez-Carretero et al., 2021).
Wright, A. M., G. T. Lloyd, and D. M. Hillis. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Systematic Biology 65 (4): 602 - 611.
Alvarez-Carretero, S., et al. 2021. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602: 263 - 267.
Archer, M. 1984 c. The Australian marsupial radiation. In M. Archer and G. Clayton (editors), Vertebrate zoogeography and evolution in Australasia: 633 - 808. Perth: Hesperian Press.
Bates, H., et al. 2014. Three new Miocene species of musky rat-kangaroos (Hypsiprymnodontidae, Macropodoidea): description, phylogenetics, and paleoecology. Journal of Vertebrate Paleontology 34 (2): 383 - 396.
Black, K. H., M. Archer, S. J. Hand, and H. Godthelp. 2012 b. The rise of Australian marsupials: a synopsis of biostratigraphic, phylogenetic, palaeoecologic and palaeobiogeographic understanding. In J. A. Talent (editor), Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time: 983 - 1078. Dordrecht: Springer Verlag.
Black, K. H., et al. 2014 c. A new species of the basal kangaroo Balbaroo and a re-evaluation of stem macropodiform interrelationships. PLoS One 9 (11): e 112705.
Burk, A., M. Westerman, and M. Springer. 1998. The phylogenetic position of the musky rat-kangaroo and the evolution of bipedal hopping in kangaroos (Macropodidae: Diprotodontia). Systematic Biology 47 (3): 457 - 474.
Butler, K., K. J. Travouillon, G. J. Price, M. Archer, and S. J. Hand. 2016. Cookeroo, a new genus of fossil kangaroo (Marsupialia, Macropodidae) from the Oligo-Miocene of Riversleigh, northwestern Queensland, Australia. Journal of Vertebrate Paleontology 36 (3): e 1083029.
Butler, K., K. J. Travouillon, G. J. Price, M. Archer, and S. J. Hand. 2017. Species abundance, richness and body size evolution of kangaroos (Marsupialia: Macropodiformes) throughout the Oligo-Miocene of Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 487: 25 - 36.
Butler, K., K. J. Travouillon, G. Price, M. Archer, and S. J. Hand. 2018. Revision of Oligo-Miocene kangaroos, Ganawamaya and Nambaroo (Marsupialia: Macropodiformes, Balbaridae). Palaeontologia Electronica 21.1.8 A: 1 - 58.
Cascini, M., K. J. Mitchell, A. Cooper, and M. J. Phillips. 2019. Reconstructing the evolution of giant extinct kangaroos: Comparing the utility of DNA, morphology, and total evidence. Systematic Biology 68 (3): 520 - 537.
Case, J. A. 1984. A new genus of Potoroinae (Marsupialia: Macropodidae) from the Miocene Ngapakaldi Local Fauna, South Australia, and a definition of the Potoroinae. Journal of Paleontology 58 (4): 1074 - 1086.
Celik, M., et al. 2019. A molecular and morphometric assessment of the systematics of the Macropus complex clarifies the tempo and mode of kangaroo evolution. Zoological Journal of the Linnean Society 186: 793 - 812.
Cooke, B. N. 1997 a. Two new balbarine kangaroos and lower molar evolution within the subfamily. Memoirs of the Queensland Museum 41 (2): 269 - 280.
Cooke, B. N. 1997 b. New Miocene bulungamayine kangaroos (Marsupialia: Potoroidae) from Riversleigh, northwestern Queensland. Memoirs of the Queensland Museum 41 (2): 281 - 294.
Cooke, B. N. 1997 c. Researches into fossil kangaroos and kangaroo evolution. Ph. D. dissertation, School of Biological Science, University of New South Wales, Sydney.
Cooke, B. N. 1999. Wanburoo hilarus gen. et sp. nov., a lophodont bulungamayine kangaroo (Marsupialia: Macropodoidea: Bulungamayinae) from the Miocene deposits of Riversleigh, northwestern Queensland. Records of the Western Australian Museum, Supplement 57: 239 - 253.
Cooke, B. N. 2000. Cranial remains of a new species of balbarine kangaroo (Marsupialia: Macropodoidea) from the Oligo-Miocene freshwater limestone deposits of Riversleigh World Heritage area, northern Australia. Journal of Paleontology 74 (2): 317 - 326.
Cooke, B. N. 2006. Kangaroos. In J. R. Merrick, M. Archer, G. M. Hickey, and M. S. Y. Lee (editors), Evolution and biogeography of Australasian vertebrates: 647 - 672. Sydney: Auscipub Pty Ltd.
Cooke, B. N., K. J. Travouillon, M. Archer, and S. J. Hand. 2015. Ganguroo robustiter, sp. nov. (Macropodoidea, Marsupialia), a middle to early late Miocene basal macropodid from Riversleigh World Heritage Area, Australia. Journal of Vertebrate Paleontology 35 (4): e 956879.
Couzens, A. M. C., and G. J. Prideaux. 2018. Rapid Pliocene adaptive radiation of modern kangaroos. Science 362: 72 - 75.
Dodt, W. G., S. Gallus, M. J. Phillips, and M. A. Nilsson. 2017. Resolving kangaroo phylogeny and overcoming retrotransposon ascertainment bias. Scientific Reports 7 (1): 16811.
Flannery, T. F. 1983. Revision in the subfamily Sthenurinae (Marsupialia: Macropodoidea) and the relationships of the species of Troposodon and Lagostrophus. Australian Mammalogy 6: 15 - 28.
Flannery, T. F., and M. Archer. 1984. The macropodoids (Marsupialia) of the early Pliocene Bow Local Fauna, central eastern New South Wales. Australian Zoologist 21 (4 - 5): 357 - 383.
Flannery, T. F., and M. Archer. 1987 b. Bettongia moyesi, a new and plesiomorphic kangaroo (Marsupialia: Potoroidae) from Miocene sediments of northwestern Queensland. In M. Archer (editor), Possums and opossums: studies in evolution: 759 - 767. Sydney: Surrey Beatty and Sons.
Flannery, T. F., and M. Archer. 1987 c. Hypsiprymnodon bartholomaii (Potoroidae: Marsupialia), a new species from the Miocene Dwornamor Local Fauna and a reassessment of the phylogenetic position of H. moschatus. In M. Archer (editor), Possums and opossums: studies in evolution: 749 - 758. Sydney: Surrey Beatty and Sons.
Flannery, T. F. 1989. Phylogeny of the Macropodoidea: a study in convergence. In G. G. Grigg, P. Jarman, and I. Hume (editors), Kangaroos, wallabies and ratkangaroos: 1 - 46. Sydney: Surrey Beatty and Sons.
Fox, R. C., and B. G. Naylor. 2006. Stagodontid marsupials from the Late Cretaceous of Canada and their systematic and functional implications. Acta Palaeontologica Polonica 51 (1): 13 - 36.
Gray, J. E. 1821. On the natural arrangement of vertebrose animals. London Medical Repository 15: 296 - 310.
Kear, B. P., and B. N. Cooke. 2001. A review of macropodoid (Marsupialia) systematics with the inclusion of a new family. Memoirs of the Association of Australasian Palaeontologists 25: 83 - 101.
Kear, B. P., M. Archer, and T. F. Flannery. 2001 a. Bulungamayine (Marsupialia: Macropodoidea) postcranial remains from the late Miocene of Riversleigh, northwestern Queensland. Memoir of the Association of Australasian Palaeontologists 25: 103 - 122.
Kear, B. P., M. Archer, and T. F. Flannery. 2001 b. Postcranial morphology of Ganguroo bilamina Cooke, 1997 (Marsupialia: Macropodidae) from the middle Miocene of Riversleigh, northwestern Queensland. Memoir of the Association of Australasian Palaeontologists 25: 123 - 138.
Kear, B. P. 2002. Phylogenetic implications of macropodid (Marsupialia: Macropodoidea) postcranial remains from Miocene deposits of Riversleigh, northwestern Queensland. Alcheringa: an Australasian Journal of Palaeontology 26 (2): 299 - 318.
Kear, B. P., B. N. Cooke, M. Archer, and T. F. Flannery. 2007. Implications of a new species of the OligoMiocene kangaroo (Marsupialia: Macropodoidea) Nambaroo, from the Riversleigh World Heritage Area, Queensland, Australia. Journal of Paleontology 81 (6): 1147 - 1167.
Kear, B. P., and N. S. Pledge. 2008. A new fossil kangaroo from the Oligocene-Miocene Etadunna Formation of Ngama Quarry, Lake Palankarinna, South Australia. Australian Journal of Zoology 55 (6): 331 - 339.
Kirkham, Z. 2004. The cranial description of the primitive macropodid Rhizosthenurus flanneryi and its phylogeny based on cranial and postcranial characters. Honours thesis, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney.
Llamas, B., et al. 2015. Late Pleistocene Australian marsupial DNA clarifies the affinities of extinct megafaunal kangaroos and wallabies. Molecular Biology and Evolution 32 (3): 574 - 584.
Long, J. A., M. Archer, T. F. Flannery, and S. J. Hand. 2002. Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution, Sydney: UNSW Press.
Meredith, R. W., M. Westerman, and M. S. Springer. 2009 a. A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Molecular Phylogenetics and Evolution 51 (3): 554 - 571.
Meredith, R. W., M. Westerman, and M. S. Springer. 2009 b. A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes: Marsupialia) based on nuclear DNA sequences. Australian Journal of Zoology 56: 395 - 410.
Mitchell, K. J., et al. 2014. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Molecular Biology and Evolution 31 (9): 2322 - 2330.
Murray, P. F. 1991. The sthenurine affinity of the late Miocene kangaroo, Hadronomas puckridgi Woodburne (Marsupialia, Macropodidae). Alcheringa: an Australasian Journal of Palaeontology 15: 255 - 283.
Murray, P. F. 1995. The postcranial skeleton of the Miocene kangaroo, Hadronomas puckridgi Woodburne (Marsupialia, Macropodidae). Alcheringa: an Australasian Journal of Palaeontology 19: 119 - 170.
Nilsson, M. A., Y. Zheng, V. Kumar, M. J. Phillips, and A. Janke. 2018. Speciation generates mosaic genomes in kangaroos. Genome Biology and Evolution 10 (1): 33 - 44.
Pearson, J. 1950. The relationships of the Potoroidae to the Macropodidae (Marsupialia). Paper of the Royal Society of Tasmania 1950: 211 - 229.
Phillips, M. J. 2015. Four mammal fossil calibrations: balancing competing palaeontological and molecular considerations. Palaeontologia Electronica 18.1.5 FC: 1 - 16.
Prideaux, G. J. 2004. Systematics and evolution of the sthenurine kangaroos. University of California Publications in Geological Sciences 146: 1 - 622.
Prideaux, G. J., and N. M. Warburton. 2010. An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (Macropodidae: Marsupialia). Zoological Journal of the Linnean Society 159: 954 - 987.
Prideaux, G. J., and R. H. Tedford. 2012. Tjukuru wellsi, gen. et sp. nov., a lagostrophine kangaroo (Diprotodontia, Macropodidae) from the Pliocene (Tirarian) of northern South Australia. Journal of Vertebrate Paleontology 32 (3): 717 - 721.
Travouillon, K. J., B. N. Cooke, M. Archer, and S. J. Hand. 2014 b. Revision of basal macropodids from the Riversleigh World Heritage Area with descriptions of new material of Ganguroo bilamina Cooke, 1997 and a new species. Palaeontologia Electronica 17 (1): 20 A.
Travouillon, K. J., M. Archer, and S. J. Hand. 2015 a. Revision of Wabularoo, an early macropodid kangaroo from mid-Cenozoic deposits of the Riversleigh World Heritage Area, Queensland, Australia. Alcheringa: an Australasian Journal of Palaeontology 39 (2): 274 - 286.
Travouillon, K. J., K. Butler, M. Archer, and S. J. Hand. 2022. Two new species of the genus Gumardee (Marsupialia, Macropodiformes) reveal the repeated evolution of bilophodonty in kangaroos. Alcheringa: an Australasian Journal of Palaeontology 46 (1): 105 - 128.
Woodburne, M. O. 1967. The Alcoota Fauna, central Australia. Bulletin of the Bureau of Mineral Resources Geology and Geophysics, Australia 87: 1 - 187.
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
Order |
|
Family |
1 (by felipe, 2022-08-07 14:35:17)
2 (by ExternalLinkService, 2022-08-07 15:29:28)
3 (by felipe, 2022-08-08 12:28:52)
4 (by felipe, 2022-08-08 13:46:01)
5 (by felipe, 2022-08-08 14:10:54)
6 (by felipe, 2022-08-08 14:23:18)
7 (by felipe, 2022-08-08 14:59:08)
8 (by felipe, 2022-08-08 15:15:06)
9 (by ExternalLinkService, 2022-08-08 19:30:07)
10 (by ExternalLinkService, 2022-08-30 20:38:21)
11 (by ExternalLinkService, 2022-08-30 20:38:21)