Agreodontia Beck et al., 2014
publication ID |
https://doi.org/10.1206/0003-0090.457.1.1 |
DOI |
https://doi.org/10.5281/zenodo.6974213 |
persistent identifier |
https://treatment.plazi.org/id/03EFDD5D-F6F5-68E6-D918-FA751992F90D |
treatment provided by |
Felipe (2022-08-07 14:35:17, last updated 2024-11-26 19:59:02) |
scientific name |
Agreodontia Beck et al., 2014 |
status |
|
CONTENTS: Dasyuromorphia , Notoryctemorphia , and Peramelemorphia .
STEM AGE: 48.0 Mya (95% HPD: 44.3–50.9 Mya).
CROWN AGE: 45.7 Mya (95% HPD: 42.3–49.2 Mya).
UNAMBIGUOUS CRANIODENTAL SYNAPOMORPHIES: Median parietal suture at least partially fused in subadults (char. 25: 0→1; ci = 0.143).
COMMENTS: Beck et al. (2014) gave the name Agreodontia to a clade comprising the Australian orders Dasyuromorphia , Peramelemorphia , and Notoryctemorphia , which they defined as the most inclusive clade including Perameles nasuta , Notoryctes typhlops , and Dasyurus maculatus , but excluding Phalanger orientalis ( Beck et al., 2014: 132) . Monophyly of Agreodontia has been consistently supported by analyses of nuclear and combined nuclear and mitochondrial sequence data (e.g., Amrine-Madsen et al., 2003b; Phillips et al., 2006; Beck, 2008a; Meredith et al., 2008b, 2009 c, 2011; Mitchell et al., 2014; Duchêne et al., 2018; Álvarez-Carretero et al., 2021), but it is supported only by mitochondrial sequence data when base composition is corrected for ( Nilsson et al., 2004; Phillips et al., 2006). A single, uncontradicted retrotransposon insertion also supports agreodontian monophyly, but this does not represent statistically significant support ( Nilsson et al., 2010; Gallus et al., 2015a). Recent morphological analyses vary as to whether they recover Agreodontia or not (e.g., Horovitz and Sánchez-Villagra, 2003; Beck et al., 2008 a, 2014; Horovitz et al., 2008, 2009; Carneiro and Oliveira, 2017a; Carneiro et al., 2018; Carneiro, 2019), but this clade has been recovered by most total-evidence analyses ( Beck et al., 2008 a, 2014, 2016; Beck, 2012, 2017a; Maga and Beck, 2017) with the exception of that of Asher et al. (2004).
Our results conform to this general pattern of inconsistent support: whereas our nuclear (fig. 27), combined nuclear and mitochondrial (fig. 29), and total evidence (figs. 32, 33) analyses support monophyly of Agreodontia, our mitochondrial (fig. 28) and morphological (figs. 30, 31) analyses do not. Only partial fusion of the median parietal suture before adulthood optimizes as an unambiguous craniodental synapomorphy of this clade in our dated total-evidence analysis, but this transformation is reversed within Dasyuromorphia .
Putative peramelemorphians have been reported from the earliest Eocene Tingamarra Local Fauna ( Godthelp et al., 1992; Archer et al., 1993a; Muirhead, 1994; Archer et al., 1999; Long et al., 2002). Given the published early Eocene (54.6 Mya) radiometric date for Tingamarra ( Godthelp et al., 1992), this material would represent the oldest known record of the Agreodontian crown clade and would markedly predate our estimate for the most recent common ancestor of Agreodontia (45.7 Mya; 95% HPD: 42.3–49.2 Mya). However, examination of these Tingamarran specimens by R.M.D.B. revealed some similarities to bunodont, nonperamelemorphian metatherians from the Palaeogene of South America and Australia (e.g., Chulpasia , Rosendolops ; see Archer et al., 1993a; Crochet and Sigé, 1993; Goin and Candela, 1996; Sigé et al., 2009), so we are not convinced that they represent peramelemorphians.
A major gap in the Australian fossil record after the early Eocene ( Archer et al., 1999; Long et al., 2002; Woodhead et al., 2014) means that the oldest definitive agreodontians are from the late Oligocene, which is much younger than our estimate for the age of the most recent common ancestor of Agreodontia. Specifically, representatives of Peramelemorphia and Dasyuromorphia are known from multiple late Oligocene sites in central Australia and at Riversleigh World Heritage Area ( Long et al., 2002; Wroe, 2003; Archer et al., 2006; Archer and Hand, 2006; Warburton and Travouillon, 2016; Kealy and Beck, 2017; Eldridge et al., 2019). A single partial upper molar of an alleged thylacinid (NTM P2815- 10; Murray and Megirian, 2006b) and a single upper molar of a probable notoryctemorphian (NTM P2815-6; Murray and Megirian, 2006b; Beck et al., 2014: 151, 2016: 166) are known from the Pwerte Marnte Marnte Local Fauna in the Northern Territory, which is probably slightly older than the central Australian and Riversleigh sites ( Megirian et al., 2010), but which is still late Oligocene.
Alvarez-Carretero, S., et al. 2021. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602: 263 - 267.
Amrine-Madsen, H., et al. 2003 b. Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials. Molecular Phylogenetics and Evolution 28 (2): 186 - 196.
Archer, M., H. Godthelp, and S. J. Hand. 1993 a. Early Eocene marsupial from Australia. Kaupia 3: 193 - 200.
Archer, M., and S. J. Hand. 2006. The Australian marsupial radiation. In J. R. Merrick, M. Archer, G. M. Hickey, and M. S. Y. Lee (editors), Evolution and biogeography of Australasian vertebrates: 575 - 646. Sydney: Auscipub Pty Ltd.
Asher, R. J., I. Horovitz, and M. R. Sanchez-Villagra. 2004. First combined cladistic analysis of marsupial mammal interrelationships. Molecular Phylogenetics and Evolution 33: 240 - 250.
Bassarova, M., and M. Archer. 1999. Living and extinct pseudocheirids (Marsupialia, Pseudocheiridae): Phylogenetic relationships and changes in diversity through time. Australian Mammalogy 21: 25 - 27.
Beck, R. M. D. 2008 a. A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. Journal of Mammalogy 89 (1): 175 - 189.
Beck, R. M. D., H. Godthelp, V. Weisbecker, M. Archer, and S. J. Hand. 2008 a. Australia's oldest marsupial fossils and their biogeographical implications. PLoS One 3 (3): e 1858.
Beck, R. M. D. 2012. An ' ameridelphian' marsupial from the early Eocene of Australia supports a complex model of Southern Hemisphere marsupial biogeography. Naturwissenschaften 99 (9): 715 - 729.
Beck, R. M. D., K. J. Travouillon, K. P. Aplin, H. Godthelp, and M. Archer. 2014. The osteology and systematics of the enigmatic Australian Oligo-Miocene metatherian Yalkaparidon (Yalkaparidontidae; Yalkaparidontia;? Australidelphia; Marsupialia). Journal of Mammalian Evolution 21 (2): 127 - 172.
Beck, R. M. D., N. M. Warburton, M. Archer, S. J. Hand, and K. P. Aplin. 2016. Going underground: postcranial morphology of the early Miocene marsupial mole Naraboryctes philcreaseri and the evolution of fossoriality in notoryctemorphians. Memoirs of Museum Victoria 74: 151 - 171.
Beck, R. M. D. 2017 a. The skull of Epidolops ameghinoi from the early Eocene Itaborai fauna, southeastern Brazil, and the affinities of the extinct marsupialiform order Polydolopimorphia. Journal of Mammalian Evolution 24 (4): 373 - 414.
Carneiro, L. M., and E. V. Oliveira. 2017 a. Systematic affinities of the extinct metatherian Eobrasilia coutoi Simpson, 1947, a South American early Eocene Stagodontidae: implications for Eobrasiliinae. Revista Brasileira de Paleontologia 20 (3): 355 - 372.
Carneiro, L. M., E. V. Oliveira, and F. J. Goin. 2018. Austropediomys marshalli gen. et sp. nov., a new Pediomyoidea (Mammalia, Metatheria) from the Paleogene of Brazil: paleobiogeographic implications. Revista Brasileira de Paleontologia 21 (2): 120 - 131.
Carneiro, L. M. 2019. A new protodidelphid (Mammalia, Marsupialia, Didelphimorphia) from the Itaborai Basin and its implications for the evolution of the Protodidelphidae. Anais da Academia Brasileira de Ciencias 91 (Suppl. 2): e 20180440.
Crochet, J. - Y., and B. Sige. 1993. Les mammiferes de Chulpas (Formation Umayo, transition Cretace-Tertiare, Perou). Donnees preliminaires. Documents du Laboratoire de Geologie de Lyon 125: 97 - 107.
Duchene, D. A., et al. 2018. Analysis of phylogenomic tree space resolves relationships among marsupial families. Systematic Biology 67 (3): 400 - 412.
Eldridge, M. D. B., R. M. D. Beck, D. A. Croft, K. J. Travouillon, and B. J. Fox. 2019. An emerging consensus in the evolution, phylogeny, and systematics of marsupials and their fossil relatives (Metatheria). Journal of Mammalogy 100 (3): 802 - 837.
Gallus, S., A. Janke, V. Kumar, and M. A. Nilsson. 2015 a. Disentangling the relationship of the Australian marsupial orders using retrotransposon and evolutionary network analyses. Genome Biology and Evolution 7 (4): 985 - 992.
Godthelp, H., M. Archer, R. L. Cifelli, S. J. Hand, and C. F. Gilkeson. 1992. Earliest known Australian Tertiary mammal fauna. Nature 356: 514 - 516.
Goin, F. J., and A. M. Candela. 1996. A new early Eocene polydolopimorphian (Mammalia, Marsupialia) from Patagonia. Journal of Vertebrate Paleontology 16 (2): 292 - 296.
Horovitz, I., and M. R. Sanchez-Villagra. 2003. A morphological analysis of marsupial mammal higherlevel phylogenetic relationships. Cladistics 19: 181 - 212.
Horovitz, I., et al. 2008. The anatomy of Herpetotherium cf. fugax Cope, 1873, a metatherian from the Oligocene of North America. Palaeontographica Abteilung A 284 (4 - 6): 109 - 141.
Horovitz, I., et al. 2009. Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS One 4 (12): e 8278.
Kealy, S., and R. M. D. Beck. 2017. Total evidence phylogeny and evolutionary timescale for Australian faunivorous marsupials (Dasyuromorphia). BMC Evolutionary Biology 17 (1): 240.
Long, J. A., M. Archer, T. F. Flannery, and S. J. Hand. 2002. Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution, Sydney: UNSW Press.
Maga, A. M., and R. M. D. Beck. 2017. Skeleton of an unusual, cat-sized marsupial relative (Metatheria: Marsupialiformes) from the middle Eocene (Lutetian: 44 - 43 million years ago) of Turkey. PLoS One 12 (8): e 0181712.
Megirian, D., G. J. Prideaux, P. F. Murray, and N. Smit. 2010. An Australian land mammal age biochronological scheme. Paleobiology 36 (4): 658 - 671.
Meredith, R. W., M. Westerman, J. A. Case, and M. S. Springer. 2008 b. A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. Journal of Mammalian Evolution 15 (1): 1 - 36.
Meredith, R. W., C. Krajewski, M. Westerman, and M. S. Springer. 2009 c. Relationships and divergence times among the orders and families of Marsupialia. Museum of Northern Arizona Bulletin 65: 383 - 406.
Mitchell, K. J., et al. 2014. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Molecular Biology and Evolution 31 (9): 2322 - 2330.
Muirhead, J. 1994. Systematics, evolution and palaeobiology of recent and fossil bandicoots (Marsupialia: Peramelemorphia). Ph. D. dissertation, School of Biological Science, University of New South Wales, Sydney.
Murray, P. F., and D. Megirian. 2006 b. The Pwerte Marnte Marnte Local Fauna: a new vertebrate assemblage of presumed Oligocene age from the Northern Territory of Australia. Alcheringa: an Australasian Journal of Palaeontology Special Issue 1: 211 - 228.
Nilsson, M. A., U. Arnason, P. B. S. Spencer, and A. Janke. 2004. Marsupial relationships and a timeline for marsupial radiation in South Gondwana. Gene 340: 189 - 196.
Nilsson, M. A., et al. 2010. Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biology 8 (7): e 1000436.
Phillips, M. J., P. A. McLenachan, C. Down, G. C. Gibb, and D. Penny. 2006. Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations. Systematic Biology 55 (1): 122 - 137.
Rambaut, A., M. A. Suchard, D. Xie, and A. J. Drummond. 2014. Tracer v 1.6.
Rodgers, J. C. 2011. Comparative morphology of the vestibular semicircular canals in therian mammals. Ph. D. dissertation, Faculty of the Graduate School, University of Texas at Austin, Austin.
Sige, B., et al. 2009. Chulpasia and Thylacotinga, late Paleocene-earliest Eocene trans-Antarctic Gondwanan bunodont marsupials: New data from Australia. Geobios 42 (6): 813 - 823.
Warburton, N. M., and K. J. Travouillon. 2016. The biology and palaeontology of the Peramelemorphia: a review of current knowledge and future research directions. Australian Journal of Zoology 64 (3): 151 - 181.
Woodhead, J., et al. 2014. Developing a radiometricallydated chronologic sequence for Neogene biotic change in Australia, from the Riversleigh World Heritage Area of Queensland. Gondwana Research 29 (1): 153 - 167.
Wroe, S. 2003. Australian marsupial carnivores: recent advances in palaeontology. In M. Jones, C. Dickman, and M. Archer (editors), Predators with pouches: the biology of marsupial carnivores: 102 - 123. Collingwood, Australia: CSIRO Publishing.
HPD |
Hampstead Scientific Society |
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
1 (by felipe, 2022-08-07 14:35:17)
2 (by felipe, 2022-08-08 13:46:01)
3 (by felipe, 2022-08-08 14:10:54)
4 (by felipe, 2022-08-08 14:49:10)
5 (by felipe, 2022-08-08 15:15:06)
6 (by felipe, 2022-08-08 15:28:31)
7 (by felipe, 2022-08-08 17:31:39)
8 (by ExternalLinkService, 2022-08-08 17:40:02)
9 (by ExternalLinkService, 2022-08-08 19:30:07)
10 (by ExternalLinkService, 2022-08-30 20:38:21)
11 (by ExternalLinkService, 2022-08-30 20:38:21)