Cheliferidae, Albian, Risso, 1826
publication ID |
https://doi.org/ 10.5252/g2009n1a6 |
publication LSID |
lsid:zoobank.org:pub:BBDF45E0-7327-41B4-9679-CAA3D7008BCD |
persistent identifier |
https://treatment.plazi.org/id/03FAD019-FF90-FFEF-FCF0-FA6796B8FD54 |
treatment provided by |
Felipe |
scientific name |
Cheliferidae |
status |
|
Cheliferidae View in CoL ? indet. ( Figs 4 View FIG ; 5 View FIG )
Pseudoscorpionida View in CoL indet. – Néraudeau et al. 2002: 237.—
Perrichot 2004: 14; 2005: 45, 69, tables 1, 3.
Cheliferidae View in CoL indet. – Perrichot et al. 2007: 217, table 2.
MATERIAL EXAMINED. — One tritonymph ( MNHN ARC 186.1 R), amber from Archingeay-Les Nouillers, Charente-Maritime, France : Lower Cretaceous, uppermost Albian, lithological subunit A1 sensu Néraudeau & Moreau (1989).
DESCRIPTION
Carapace clearly longer than broad; eyes not seen, their likely position being obscured (left side) or unfavourably inclined (right side); anterior furrow well marked, about 0.42 length of carapace from posterior margin; posterior furrow weak, about 0.10 from posterior margin; prozone with sparse, conicular granulation; mesozone and metazone scaly; setae sparse, six on anterior margin. Tergites probably divided, as suggested by a fold running along the midline of tergites I-X; exact chaetotaxy not determined, but probably four or five setae on each half-tergite of most segments; tergites X and XI with a long tactile seta near middle of each halftergite. Leg coxae almost smooth; setae long, simple and few in number (about five on coxae III and IV). Coxa IV without coxal sac or spurs. Articulation between femur and patella of anterior legs moderately oblique (about 45° to axis) in dorsal view, femur relatively long in comparison with modern Cheliferoidea ; femur not much broader than patella, hence the joint between them allows only a normal degree of flexibility. Chelicera ( Fig. 5A View FIG ) with five setae on palm, es long. Spinneret with three, small, terminal rami of equal length. Palps attenuate, with strong, regular, conicular granulation.Vestitural setae moderately long, each with two or three denticulations, not clavate or raised on tubercles. Leg claws simple. Setae of tarsus I of the same length as those of the other leg tarsi. Chelal fingers largely obscured, hence not all trichobothria could be observed, but isb present near ib, which is only slightly distad of eb; it near middle of finger ( Fig. 5B View FIG ).
Measurements Body c. 1.3; carapace length c. 0.72. Palp femur c. 0.51 × 0.12 (4.4), patella 0.39 × 0.13 (2.9), chela + 0.89 × 0.20 (4.4), palm + 0.45 (2.2), palm – 0.40 (2.0), movable finger 0.49 (1.1 × palm +).
REMARKS
The differences in the form of the carapace, the granulation of the integument and the proportions of the palp preclude the possibility of this specimen being a nymph of Heurtaultia rossiorum n. gen., n. sp. It is attributed to the Cheliferidae on the basis of its general appearance, notably that of the palps, and the presence of a venedens on both fingers, but its systematic position will probably remain uncertain unless information about the adults, particularly the male, becomes available.
DISCUSSION
The Archingeay fossils are approximately contemporary with the Cheliferoidea present in Lower Cretaceous Burmese amber. Burmese amber has been dated as Lower Cenomanian to Upper Albian, with the latter being judged the most likely age ( Cruickshank & Ko 2003). Thus, although the Cheliferoidea are generally considered to be the most derived group of pseudoscorpions in terms of their morphology and behaviour ( Chamberlin 1931; Weygoldt 1966, 1969, 1970; Harvey 1992), it is clear that the superfamily was already diverse and widespread by the early Cretaceous, implying a significantly older origin of the group.
Gaping chelal fingers have appeared sporadically in the Cheliferoidea . When present in both sexes or in females alone, they are assumed to be a modification for grasping insects during phoresy ( Chamberlin 1949; Heurtault 1994). When limited to males, which are less often phoretic, they presumably represent an adaptation for holding conspecific females during mating ( Kew 1912; Chamberlin 1931) or, perhaps, other males during antagonistic interactions. If the holotype of H. rossiorum n. gen., n. sp. is a male, this suggests the presence of a mating dance in this species, which concords with the interpretation given above of the elongate setae on the tarsus as a secondary sexual dimorphism. The existence of a mating dance can be also inferred on phylogenetic grounds, since it is synapomorphic for the Cheliferoidea ( Weygoldt 1966; Harvey 1992).
The fibrous material surrounding the posterior end of the body of the nymphal cheliferid (ARC 186.1 R) is too fine and homogenous to represent fungal hyphae. It must therefore be silk, spun either by a spider or by the pseudoscorpion itself. The latter interpretation seems more plausible in view of the thinness of the layer, the fact that the pseudoscorpion is intact and the orientation of the palps. During moulting torpor, pseudoscorpions sometimes have the palps directed backwards in a similar way (e.g., Chamberlin 1924). A pseudoscorpion wrapped as prey of a spider would probably be enclosed in a thicker layer of silk, with the palps and legs appressed to the body in a more normal orientation, and might show some signs of damage. If the interpretation of a moulting nest is correct, this represents the earliest direct evidence of silk use in a pseudoscorpion. Schawaller (1978) described silk fibres emanating from the spinneret of the holotype of the Baltic amber pseudoscorpion “ Microcreagris ” koellnerorum Schawaller, 1978, but an examination of this specimen suggests that the supposed fibres are just debris: they seem too dense to be silk and are orientated towards a more distal position on the cheliceral finger than that which would normally be occupied by the spinneret (which is obscured in the fossil).
Acknowledgements
I am indebted to André Nel (MNHN), Gaël de Ploëg (formerly at MNHN), Didier Néraudeau and Vincent Perrichot for the opportunity to study the fossils from Archingeay. The holotype of “ Microcreagris ” koellnerorum was examined through the courtesy of Günter Bechly, during a visit to the Staatliches Museum für Naturkunde, Stuttgart. I thank Andrew Ross (formerly at The Natural History Museum, London) and George McGavin (Oxford University Museum of Natural History) for their efforts to find Hope’s pseudoscorpion fossil from Aix-en-Provence. Helpful comments on the manuscript were provided by André Nel, Vincent Perrichot and an anonymous referee. This work is a contribution to the project AMBRACE no. BLAN07-1-184190, funded by the French Agence nationale de la Recherche.
REFERENCES
BEIER M. 1948. — Über Pseudoscorpione der australischen Region. Eos 24: 525-562.
CHAMBERLIN J. C. 1924. — Giant Garypus of the Gulf of California. Nature Magazine, Washington, 2: 171-172, 175.
CHAMBERLIN J. C. 1931. — The arachnid order Chelonethida. Stanford University Publications, University Series (Biological Sciences) 7: 1-284.
CHAMBERLIN J. C. 1949. — New and little-known false scorpions from various parts of the world (Arachnida, Chelonethida), with notes on structural abnormalities in two species. American Museum Novitates 1430: 1-57.
COCKERELL T. D. A. 1917. — Arthropods in Burmese amber. American Journal of Science (4) 44: 135-138.
COCKERELL T. D. A. 1920. — Fossil arthropods in the British Museum. – I. Annals and Magazine of Natural History (9) 5: 273-279.
CRUICKSHANK R. D. & KO K. 2003. — Geology of an amber locality in the Hukawng Valley, Northern Myanmar. Journal of Asian Earth Sciences 21 (5): 441-455 (dated 2002, published 2003).
DEJAX J. & MASURE E. 2005. — Analyse palynologique de l’argile lignitifère à ambre de l’Albien terminal d’Archingeay (Charente-Maritime, France). Comptes Rendus Palevol 4: 53-65.
DELCLÒS X., ARILLO A., PEÑALVER E., BARRÓN E., SORIANO C., LÓPEZ DEL VALLE R., BERNÁRDEZ E., CORRAL C. & ORTUÑO V. M. 2007. — Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol 6: 135-149.
GRIMALDI D. A. 1996. — Amber: Window to the Past. American Museum of Natural History; H. N. Abrams Inc., New York, 216 p.
GRIMALDI D., ENGEL M. S. & NASCIMBENE P. C. 2002.— Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates 3361: 1-71.
HARVEY M. S. 1992. — The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebrate Taxonomy 6: 1373-1435.
HENNIG W. 1969. — Die Stammesgeschichte der Insekten. Kramer, Frankfurt am Main, 436 p.
HENNIG W. 1981. — Insect Phylogeny. Wiley, New York, 514 p.
HEURTAULT J. 1994. — Un cas indirect de phorésie: les pseudoscorpions Withiidae des termitières mortes de Macrotermes en Afrique tropicale. Boletin dell’ Accademia Gioenia di Scienze Naturali 26 (345): 189-208 (dated 1993, published 1994).
HOFF C. C. 1949. — Wyochernes hutsoni, a new genus and species of chernetid pseudoscorpion. Transactions of the American Microscopical Society 68: 40-48.
HOPE F. W. 1847. — Observations on the fossil insects of Aix in Provence, with descriptions and figures of three species. Transactions of the Entomological Society of London 4: 250-255, pl. 19.
JEFFERIES R. P. S. 1979. — The origin of chordates – a methodological essay, in HOUSE M. R. (ed.), The Origin of the Major Invertebrate Groups. Academic Press, London: 443-477.
JUDSON M. L. I. 1985. — Redescription of Myrmochernes Tullgren (Chelonethida: Chernetidae). Bulletin of the British Arachnological Society 6: 321-327.
JUDSON M. L. I. 1997. — Catalogue of the pseudoscorpion types (Arachnida: Chelonethi) in the Natural History Museum, London. Occasional Papers on Systematic Entomology 11: 1-54.
JUDSON M. L. I. 2000. — Electrobisium acutum Cockerell, a cheiridiid pseudoscorpion from Burmese amber, with remarks on the validity of the Cheiridioidea (Arachnida, Chelonethi). Bulletin of the Natural History Museum, London (Geology) 56: 79-83.
JUDSON M. L. I. 2007 a. — First fossil record of the pseudoscorpion family Pseudochiridiidae (Arachnida, Chelonethi, Cheiridioidea) from Dominican amber. Zootaxa 1393: 45-51.
JUDSON M. L. I. 2007 b. — A new and endangered pseudoscorpion of the genus Lagynochthonius (Arachnida, Chelonethi, Chthoniidae) from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini. Zootaxa 1627: 53-68.
KEW H. W. 1912. — On the pairing of Pseudoscorpiones. Proceedings of the Zoological Society of London 25: 376-390.
MUCHMORE W.B. 1997 a. — An unusual new Pachychernes from Panama and Mexico (Pseudoscorpionida, Chernetidae). Entomological News 108: 19-23.
MUCHMORE W. B. 1997 b. — Tuberochernes (Pseudoscorpionida, Chernetidae), a new genus with species in caves in California and Arizona. Journal of Arachnology 25: 206-212.
NEL A., DE PLOËG G., DEJAX J., DUTHEIL D., DE FRAN- CESCHI D., GHEERBRANT E., GODINOT M., HERVET S., MENIER J.-J., AUGÉ M., BIGNOT G., CAVAGNETTO C., DUFFAUD S., GAUDANT J., HUA S., JOSSANG A., DE LAPPARENT DE BROIN F., POZZI J.-P., PAICHELER J.-C., BEUCHET F. & RAGE J.-C. 1999. — Un gisement sparnacien exceptionnel à plantes, arthropodes et vertébrés (Éocène basal, MP7): Le Quesnoy (Oise, France). Comptes rendus de l’Académie des Sciences, Paris (IIa) 329: 65-72.
NÉRAUDEAU D. & MOREAU P. 1989. — Paléoécologie et paléobiogéographie des faunes d’échinides du Cénomanien nord-aquitain (Charente-Maritime, France). Geobios 22: 293-324.
NÉRAUDEAU D., PERRICHOT V., DEJAX J., MASURE E., NEL A., PHILIPPE M., MOREAU P., GUILLOCHEAU F. & GUYOT T. 2002. — Un nouveau gisement à ambre insectifère et à végétaux (Albien terminal probable): Archingeay (Charente-Maritime, France). Geobios 35: 233-240.
PERRICHOT V. 2004. — Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna. Geologica Acta 2: 9-22.
PERRICHOT V. 2005. — Environnements paraliques à ambre et à végétaux du Crétacé nord-aquitain (Charentes, Sud-Ouest de la France). Mémoires de Géosciences Rennes 118: 1-213.
PERRICHOT V., NÉRAUDEAU D., NEL A. & DE PLOËG G. 2007. — A reassessment of the Cretaceous amber deposits from France and their palaeontological significance. African Invertebrates 48: 213-227.
SCHAWALLER W. 1978. — Neue Pseudoskorpione aus dem Baltischen Bernstein der Stuttgarter Bernstein Sammlung (Arachnida: Pseudoscorpionidea). Stuttgarter Beiträge zur Naturkunde (B) 42: 1-22.
SCHAWALLER W. 1991. — The first Mesozoic pseudoscorpion, from Cretaceous Canadian amber. Palaeontology 34: 971-976.
SCHAWALLER W., SHEAR W. A. & BONAMO P.M. 1991. — The first Paleozoic pseudoscorpions (Arachnida, Pseudoscorpionida). American Museum Novitates 3009: 1-17.
SHULTZ J. W. 1989. — Morphology of locomotor appendages in Arachnida: evolutionary trends and phylogenetic implications. Zoological Journal of the Linnean Society 97: 1-55.
SHEAR W. A., SCHAWALLER W. & BONAMO P. M. 1989. — Record of Palaeozoic pseudoscorpions. Nature 341: 527-529.
WEYGOLDT P. 1966. — Vergleichende Untersuchungen
zur Fortpflanzungsbiologie der Pseudoscorpione. Beobachtungen über das Verhalten, die Samenübertragungsweisen und die Spermatophoren einiger einheimischer Arten. Zeitschrift für Morphologie und Ökologie der Tiere 56: 39-92.
WEYGOLDT P. 1969. — The Biology of Pseudoscorpions. Harvard University Press, Cambridge, Massachusetts, 145 p.
WEYGOLDT P. 1970. — Vergleichende Untersuchungen zur Fortpflanzungsbiologie der Pseudoscorpione II. Zeitschrift für die Zoologische Systematik und Evolutionforschung 8: 241-259.
WHALLEY P. E. S. 1980. — Neuroptera (Insecta) in amber from the Lower Cretaceous of Lebanon. Bulletin of the British Museum of Natural History (Geology) 33: 157-164.
WITH C. J. 1906. — The Danish expedition to Siam 1899-1900. III. Chelonethi. An account of the Indian false-scorpions together with studies on the anatomy and classification of the order. Det Konigelige Danske Videnskabernes Selskabs Skrifter 3 (7): 1-214, 1 map, pls I-IV.
WITH C. J. 1908. — An account of the South-American Cheliferinae in the collections of the British and Copenhagen museums. Transactions of the Zoological Society of London 18: 217-340, pls 29-31.
Submitted on 8 April 2008;
accepted on 23 September 2008.
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
Order |
|
Family |
Cheliferidae
Judson, Mark L. I. 2009 |
Cheliferidae
PERRICHOT V. & NERAUDEAU D. & NEL A. & DE PLOEG G. 2007: 217 |
Pseudoscorpionida
NERAUDEAU D. & PERRICHOT V. & DEJAX J. & MASURE E. & NEL A. & PHILIPPE M. & MOREAU P. & GUILLOCHEAU F. & GUYOT T. 2002: 237 |