Limosilactobacillus reuteri, 2021

Li, Fuyong, Cheng, Christopher C., Zheng, Jinshui, Liu, Junhong, Quevedo, Rodrigo Margain, Li, Junjie, Roos, Stefan, Gänzle, Michael G. & Walter, Jens, 2021, Limosilactobacillus balticus sp. nov., Limosilactobacillus agrestis sp. nov., Limosilactobacillus albertensis sp. nov., Limosilactobacillus rudii sp. nov. and Limosilactobacillus fastidiosus sp. nov., five novel Limosilactobacillus species isolated from the vertebrate gastrointestinal tract, and proposal of six subspecies of Limosilactobacillus reuteri adapted to the gastrointestinal tract of specific vertebrate hosts, International Journal of Systematic and Evolutionary Microbiology (004644) 71 (2), pp. 1-21 : 19

publication ID

https://doi.org/ 10.1099/ijsem.0.004644

DOI

https://doi.org/10.5281/zenodo.6310189

persistent identifier

https://treatment.plazi.org/id/CD6F3526-FFC9-252A-477E-FF6BFE3223A8

treatment provided by

Felipe

scientific name

Limosilactobacillus reuteri
status

subsp. nov.

DESCRIPTION OF LIMOSILACTOBACILLUS REUTERI SUBSP. MURIUM SUBSP. NOV.

Limosilactobacillus reuteri subsp. murium (mu′ ri.um. L. plur. gen. n. murium of mice, referring to the adaptation of strains of the subspecies to rodents including mice).

L. reuteri strains clustered in lineage I ( Fig. 3 View Fig ) belong to L. reuteri subsp. murium and they were isolated from rodents [ 5 – 7]. Strains of this subspecies have ANI values of 96.8–99.1 % with each other and ANI values of 94.5–96.5% with other L. reuteri strains belonging to different subspecies ( Fig. 4 View Fig ). Acid is produced from L-arabinose,D-ribose, D-galactose,D-glucose, maltose, lactose, melibiose, sucrose and raffinose; acid production from potassium gluconate is strain-specific; acid is not produced from D-xylose, D-fructose, D-mannose, methyl α- D-glucopyranoside, aesculin, glycerol, erythritol, D-arabinose, L-xylose, D-adonitol, methyl β -D-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α- D-mannopyranoside, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose,D-tagatose,D-fucose,L-fucose,D-arabitol, L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. Phylogenetic analyses based on the core genes identified in this study ( Fig. 3 View Fig ) and a previous studies [ 5], AFLP and MLSA (using concatenated sequences of ddl, pkt, leuS, gyrB, dltA, rpoA and recA genes) [ 7] indicate that strains clustered in this lineage are rodent-specific. Strains of L. reuteri subsp. murium displayed elevated fitness in mice through the colonization and biofilm formation on the forestomach epithelium [ 5, 7, 11], suggesting that their evolution with rodents was adaptive and led to host specificity. Large surface proteins (>750 aa) exist among strains belonging to this subspecies, which involve in epithelial adhesion and biofilm formation [ 6]. Strains of this subspecies produce the enzyme urease for acid resistance and rarely produce the antimicrobial compound reuterin [ 6, 8].

The type strain, lpuph1 T (=DSM 110570 T =LMG 31634 T), was isolated from mouse gastrointestinal tract [ 6, 7], with a DNA G+C content of 38.4mol%.

Kingdom

Bacteria

Phylum

Firmicutes

Class

Bacilli

Order

Lactobacillales

Family

Lactobacillaceae

Genus

Limosilactobacillus

Loc

Limosilactobacillus reuteri

Li, Fuyong, Cheng, Christopher C., Zheng, Jinshui, Liu, Junhong, Quevedo, Rodrigo Margain, Li, Junjie, Roos, Stefan, Gänzle, Michael G. & Walter, Jens 2021
2021
Loc

L. reuteri

SUBSP. MURIUM 2021
2021
Loc

L. reuteri subsp. murium

Li & Cheng & Zheng & Liu & Quevedo & Li & Roos & Gänzle & Walter 2021
2021
Loc

L. reuteri

SUBSP. MURIUM 2021
2021
Loc

L. reuteri subsp. murium

Li & Cheng & Zheng & Liu & Quevedo & Li & Roos & Gänzle & Walter 2021
2021
GBIF Dataset (for parent article) Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF