Ambystoma laterale, (LL)

Bogart, James P. & Klemens, Michael W., 2008, Additional Distributional Records of Ambystoma laterale, A. jeffersonianum (Amphibia: Caudata) and Their Unisexual Kleptogens in Northeastern North America, American Museum Novitates 3627 (1), pp. 1-60 : 6-10

publication ID

https://doi.org/ 10.1206/604.1

persistent identifier

https://treatment.plazi.org/id/03D98906-3575-4E6E-FF50-FE82FB09FACE

treatment provided by

Carolina

scientific name

Ambystoma laterale
status

 

A. laterale (LL) View in CoL , A. jeffersonianum (JJ) , diploid, triploid, and tetraploid unisexual genomotypes b

Locus a LL JJ LJ LLJ LJJ LLLJ LJJJ LLJJ Mobility c

Aat-1 (308) d (463) (86) (227) (244) (26) (20) (1)

A 0.003 — — — — — — — +110 B 0.997 — 0.500 0.659 0.335 0.750 0.250 0.500 +100 D — 1.000 0.500 0.341 0.665 0.250 0.750 0.500 +79

Aat-2 (306) (462) (86) (223)

A — 0.995 0.500 0.335 B 0.995 0.003 0.500 0.665 C 0.005 0.002 — —

Idh-1 (307) (463) (86) (218)

Q 0.003 0.002 0.006 — A — 0.998 0.494 0.324 B 0.995 — 0.500 0.676 C 0.002 — — —

Ldh-1 (302) (462) (85) (220) A 0.003 0.002 — 0.003 B 0.886 — 0.506 0.629 C 0.002 0.998 0.494 0.327 D 0.109 — — 0.041

Ldh-2 (306) (463) (83) (222)

Q — 0.003 — 0.002 A 0.230 — 0.060 0.123 B 0.767 0.997 0.874 0.874 C 0.003 — 0.066 0.002

Mdh-1 (306) (462) (92) (227)

A — 0.002 — — B — 0.948 0.500 0.352 C 0.005 — — — D 0.995 0.050 0.500 0.648

Mpi (253) (316) (58) (180)

A — 0.003 0.086 0.007 B — 0.967 0.509 0.320 C 0.990 0.028 0.388 0.672 D 0.010 0.002 0.017 —

Pgi (162) (274) (42) (153) Q — 0.005 — 0.002 A 0.037 0.663 0.381 0.285 B 0.009 0.316 0.083 0.102 C 0.954 0.016 0.536 0.610

Pgm-1 (306) (453) (85) (216)

A 0.015 0.001 — 0.002 B 0.974 0.646 0.794 0.821 C 0.011 0.346 0.206 0.176 D — 0.007 — 0.002

(242)

0.658 0.324 —

(241)

0.004 0.650 0.346 —

(243) — 0.348 0.652 —

(243)

— 0.027 0.971 0.001

(244)

0.001 0.664 0.008 0.326

(186)

0.027 0.640 0.330 0.004

(235) — 0.567 0.074 0.359

(235)

— 0.675 0.325 —

(25) (20) (1)

0.250 0.750 — 2180 0.750 0.250 1.000 2100

— — — 250

(26) (20) (1)

— — — +160

0.240 0.812 0.500 +142

0.760 0.188 0.500 +100 — — — +50

(26) (20) (1) — — — +115

0.750 0.300 0.500 +100

0.250 0.700 0.500 +88 — — — +78

(26) (20) (1)

— — — +160 0.038 0.012 — +130 0.952 0.988 1.000 +100 0.010 — — +55

(26) (20) (1)

— — — +200

0.250 0.750 0.500 +176 — — — +135

0.750 0.250 0.500 +100

(16) (9) (1)

— — — +140

0.344 0.778 — +120

0.656 0.222 1.000 +100 — — — +80

(20) (16) (1)

— — — +380 0.225 0.531 0.500 +325 0.150 0.094 — +115 0.625 0.375 0.500 +100

(25) (19) (1)

— — — +115

0.940 0.647 1.000 +100

0.060 0.353 — +97 — — — +82

earlier study ( Bogart and Klemens, 1997). Eight sites that were re-sampled from our earlier study were not given new site numbers in the present study.

NOMENCLATURE

Identifying and naming unisexual individuals is a formidable challenge for taxonomists and conservationists. The unisexuals do have a hybrid nuclear genomic constitution, but they are not hybrids that have resulted from the crossing of A. laterale and A. jeffersonianum or any combination of the four species whose genomes might be found in a unisexual. Genomes are gained and lost by kleptogenesis, which is driven entirely by male sperm donors. In this flexible genetic system, a single unisexual female can produce offspring that have differing genotypes and genomes ( Bogart et al., 1987, 2007) and, because of intergenomic interaction ( Bi and Bogart, 2006; Bi et al., 2007), genomes found in offspring from a particular unisexual might evolve within that unisexual independently of male genomic contribution. Lowcock et al. (1987) suggested an informal descriptive system for unisexual Ambystoma that was used by Schultz (1969) to describe the genetic composition of hybridogenetic unisexual fish of the genus Poeciliopsis . Letter designations for species that contribut- ed genomes to unisexual Ambystoma have previously been used for convenience in a number of previous studies ( Uzzell, 1964; Bogart et al., 1985, 1987; Bogart and Klemens, 1997): J for A. jeffersonianum , L for A. laterale , T for A. texanum , and Ti for A. tigrinum . The proposed name, for example, for a triploid unisexual that has a nuclear genome consisting of one A. laterale genome and two A. jeffersonianum genomes would be Ambystoma laterale – (2) jeffersonianum , or LJJ.

GENOTYPE AND GENOMOTYPE ANALYSIS

The unisexuals are mostly fixed heterozygotes for a number of isozyme alleles and their mode of reproduction is kleptogenesis. Therefore, population genetic models that are based on randomly interbreeding individuals do not apply to the unisexual kleptogens. When unisexuals occur in a population, they usually outnumber individuals of the sexual species ( Bogart and Klemens, 1997). If the sample of individuals obtained from a site contained unisexuals, but neither A. laterale nor A. jeffersonianum individuals were found, we suspected that the sample was too small to have encountered these species. In order to obtain some measure of the influence, or the

TABLE 4 Ambystoma laterale (LL) , A. jeffersonianum (JJ) , and nuclear hybrid genomes found at each site

Genome c

2n 3n 4n

Site (n) a Males b LL JJ LJ LLJ LJJ LLLJ LLJJ LJJJ %L d 2 † (35) 24 — 35 — — — — — — 00.0 7 † (4) 0 — — — 1 — 3 — — 73.3 18 † (5) 1 2 — 1 1 — — 1 — 69.2 20 † (2) 0 — — — — 2 — — — 33.3 28 † (1) 0 — — — — 1 — — — 33.3 42 † (6) 0 1 — — 5 — — — — 70.6 60 † (2) 1 2 — — — — — — — 100.0 66 † (2) 1 2 — — — — — — — 100.0 107 (25) 3 9 — 4 7 — 5 — — 76.1 108 (43) 11* 14 — 7 17 2 3 — — 72.1 109 (9) 0 — — 2 — 4 — — 3 31.0 110 (31) 6 19 — 1 9 — 2 — — 85.3 111 (26) 3 9 — — 14 — 3 — — 68.0 112 (5) 1* — — 1 4 — — — — 64.3 113 (43) 4 6 — 18 17 1 1 — — 64.2 114 (46) 20* — 44 1 — 1 — — — 2.2 115 (3) 1 — 1 — — 2 — — — 25.0 116 (1) 0 — 1 — — — — — — 00.0 117 (9) 0 — — — — 5 — — 4 29.0 118 (16) 10 — 16 — — — — — — 00.0 119 (7) 0 — 1 — — 6 — — — 30.0 120 (14) 5 — 14 — — — — — — 00.0 121 (20) 13 — 20 — — — — — — 00.0 122 (7) 1* — — 4 — 3 — — — 41.2 123 (14) 1 — 1 11 1 1 — — — 46.7 124 (11) 0 — 1 3 — 7 — — — 34.5 125 (5) 0 — 2 2 1 — — — — 36.4 126 (30) 3 — 5 5 — 18 — — 2 31.2 127 (51) 23 41 — — 10 — — — — 91.1 128 (1) 0 — — — 1 — — — — 66.7 129 (12) 2 8 — — 4 — — — — 85.7 130 (13) 1 — 6 1 — 6 — — — 21.9 131 (6) 1 — 1 — — 5 — — — 29.4 132 (2) 0 1 — — 1 — — — — 80.0 133 (7) 1 3 — — 4 — — — — 77.8 134 (2) 0 1 — 1 — — — — — 75.0 135 (1) 1 — 1 — — — — — — 00.0 136 (18) 4 7 — — 11 — — — — 76.6 137 (12) 6 — 9 2 — 1 — — — 12.0 138 (4) 1 — 2 1 — 1 — — — 22.2 139 (1) 0 — — — — 1 — — — 33.3 140 (4) 1 — 1 — — 3 — — — 27.3 141 (3) 0 — — — — 3 — — — 33.3 142 (1) 0 — — — — 1 — — — 33.3 143 (17) 8 13 — — 4 — — — — 89.5 144 (10) 4 7 — — 3 — — — — 87.0 145 (19) 2 4 — — 15 — — — — 73.1 146 (1) 1 1 — — — — — — — 100.0 147 (7) 6 7 — — — — — — — 100.0 148 (9) 1* — — — 8 — 1 — — 67.8

TABLE 4 (Continued)

Genome c

2n 3n 4n

Site (n) a Males b LL JJ LJ LLJ LJJ LLLJ LLJJ LJJJ %L d 149 (1) 0 — — — 1 — — — — 66.7 150 (17) 4 17 — — — — — — — 100.0 151 (9) 4 7 — — 2 — — — — 90.0 152 (10) 5* 8 — — 2 — — — — 90.9 153 (1) 0 1 — — — — — — — 100.0 154 (13) 8 13 — — — — — — — 100.0 155 (10) 1 2 — — 7 — 1 — — 72.4 156 (13) 5 — 6 3 — 4 — — — 23.3 157 (8) 1 — 1 — — 7 — — — 30.4 158 (13) 6 — 7 1 — 5 — — — 19.4 159 (9) 1 — 2 1 — 6 — — — 29.2 160 (4) 0 — — — — 4 — — — 33.3 161 (11) 0 — — — 3 7 — — 1 41.2 162 (16) 5* 5 — — 10 — 1 — — 75.0 163 (12) 2 — 3 — — 9 — — — 27.3 164 (12) 5 — 6 — — 6 — — — 20.0 165 (17) 1* — — — — 17 — — — 33.3 166 (15) 2 — 3 — — 12 — — — 28.6 167 (6) 2 — 3 — — 3 — — — 20.0 168 (38) 4 9 — — 26 — 3 — — 90.6 169 (7) 1 — 1 1 — 5 — — — 31.6 170 (33) 25 — 33 — — — — — — 00.0 171 (10) 8 — 10 — — — — — — 00.0 172 (9) 5 — 9 — — — — — — 00.0 173 (17) 10 — 17 — — — — — — 00.0 174 (3) 0 — — 1 2 — — — — 62.5 175 (21) 15 — 21 — — — — — — 00.0 176 (1) 0 — 1 — — — — — — 00.0 177 (5) 5 — 5 — — — — — — 00.0 178 (1) 0 — 1 — — — — — — 00.0 179 (17) 4 — 9 — — 7 — — 1 18.6 180 (25) 7 — 25 — — — — — — 00.0 181 (16) 10 — 16 — — — — — — 00.0 182 (26) 15 — 26 — — — — — — 00.0 183 (16) 7 — 16 — — — — — — 00.0 184 (2) 2 — 2 — — — — — — 00.0 185 (18) 14 — 18 — — — — — — 00.0 186 (18) 12 — 18 — — — — — — 00.0 187 (12) 4 — 12 — — — — — — 00.0 188 (10) 10 — 10 — — — — — — 00.0 189 (65) 24 45 — — 20 — — — — 86.7 190 (4) 4 — 4 — — — — — — 00.0 191 (9) 3 — 3 — — 6 — — — 25.0 192 (4) 1 — 1 1 — 1 — — 1 27.3 193 (3) 0 — — — — 3 — — — 33.3 194 (9) 1 — 1 — — 7 — — 1 29.6 195 (15) 4 — 6 — — 9 — — — 23.1 196 (3) 1 — 3 — — — — — — 00.0 197 (1) 0 — — — 1 — — — — 66.7 198 (13) 3 4 — — 2 4 3 — — 67.6

TABLE 4 (Continued)

presence of the sexual species, we calculated the genomic percentage of A. laterale in each site to obtain values ranging from 0% (all A. jeffersonianum ) to 100% (all A. laterale ). Under this scheme, a triploid LLJ would be 66.7% ( A. laterale ) and triploid LJJ would be 33.3% ( A. laterale ). If the average percentage of all the individuals from a site was below 50 then A. jeffersonianum is assumed to be the sperm donor in that population even though the sample of salamanders may not have included A. jeffersonianum . We use the term genomotype ( Lowcock, 1994) to describe the template genomic contributions of A. laterale (LL) and A. jeffersonianum (JJ) in diploid and polyploid unisexual individuals while recognizing that the combination of genomes in unisexuals may be slightly restructured by intergenomic recombinations and translocations ( Bi and Bogart, 2006; Bi et al., 2007).

Kingdom

Animalia

Phylum

Chordata

Class

Amphibia

Order

Caudata

Family

Ambystomatidae

Genus

Ambystoma

Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF